Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172062

RESUMO

Oaks (Quercus spp.) are widespread hardwood trees in the Northern Hemisphere and of high ecological, economic, and social values. Optimal experimental design of genetic trials is essential for accurate estimates of genetic parameters and improving the genetic merit of breeding stock. Here, we evaluate the use of post hoc row-column factors combined with spatial adjustment to improve genetic analyses of parents and individual trees in field progeny tests of plantation hardwoods, using cherrybark oak (Quercus pagoda Raf.) as an example. For tree height, post hoc incomplete blocking reduced ~14% more of the within-block environmental variance compared to the randomized complete block design (RCBD) model. Incomplete blocking also improved the heritability estimates for height by 7% to 14% compared to the original RCBD model. No clinal trend for growth breeding values was identified due to provenances. Our approach warrants the initial selection for height as early as age ~10 based on its moderate narrow-sense heritability of 0.2; however, diameter and volume need longer evaluation times. The post hoc incomplete blocking is more efficient and promising to improve the genetic analysis of Q. pagoda to minimize the environmental heterogeneity influences. Adjusting competition and spatial effects, including the distance principal components and autoregressive residual structure notably improves the model fit based on the observed reductions in AICs and BICs. Employing our approach is promising for hardwood genetic improvement in the southern USA.


Assuntos
Quercus , Quercus/genética , Projetos de Pesquisa , Melhoramento Vegetal , Árvores
2.
J Nematol ; 51: 1-2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31088025

RESUMO

The reniform nematode (Rotylenchulus reniformis) is a sedentary semi-endoparasitic species that is pathogenic on many row crops, fruits, and vegetables. Here, the authors present a draft genome assembly of R. reniformis using small- and large-insert libraries sequenced on the Illumina GAIIx and MiSeq platforms.The reniform nematode (Rotylenchulus reniformis) is a sedentary semi-endoparasitic species that is pathogenic on many row crops, fruits, and vegetables. Here, the authors present a draft genome assembly of R. reniformis using small- and large-insert libraries sequenced on the Illumina GAIIx and MiSeq platforms.

3.
PLoS One ; 6(1): e16214, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21283709

RESUMO

Loblolly pine (LP; Pinus taeda L.) is the most economically important tree in the U.S. and a cornerstone species in southeastern forests. However, genomics research on LP and other conifers has lagged behind studies on flowering plants due, in part, to the large size of conifer genomes. As a means to accelerate conifer genome research, we constructed a BAC library for the LP genotype 7-56. The LP BAC library consists of 1,824,768 individually-archived clones making it the largest single BAC library constructed to date, has a mean insert size of 96 kb, and affords 7.6X coverage of the 21.7 Gb LP genome. To demonstrate the efficacy of the library in gene isolation, we screened macroarrays with overgos designed from a pine EST anchored on LP chromosome 10. A positive BAC was sequenced and found to contain the expected full-length target gene, several gene-like regions, and both known and novel repeats. Macroarray analysis using the retrotransposon IFG-7 (the most abundant repeat in the sequenced BAC) as a probe indicates that IFG-7 is found in roughly 210,557 copies and constitutes about 5.8% or 1.26 Gb of LP nuclear DNA; this DNA quantity is eight times the Arabidopsis genome. In addition to its use in genome characterization and gene isolation as demonstrated herein, the BAC library should hasten whole genome sequencing of LP via next-generation sequencing strategies/technologies and facilitate improvement of trees through molecular breeding and genetic engineering. The library and associated products are distributed by the Clemson University Genomics Institute (www.genome.clemson.edu).


Assuntos
Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Genoma de Planta , Pinus taeda/genética , Sequência de Bases , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...