Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(33): 7036-7045, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39114900

RESUMO

Coupled cluster methods based exclusively on double excitations are comparatively "cheap" and interesting model chemistries, as they are typically able to capture the bulk of the dynamic electron correlation effects. The trade-off in such approximations is that the effect of neglected excitations, particularly single excitations, can be considerable. Using standard and electron-pair-restricted T2 operators to define two flavors of unitary coupled cluster doubles (UCCD) methods, we investigate the extent to which missing single excitations can be recovered from low-order corrections in many-body perturbation theory (MBPT) within the unitary coupled cluster (UCC) formalism. Our analysis includes the derivations of finite-order UCC energy functionals, which are used as a basis to define perturbative estimates of missed single excitations. This leads to the novel UCCD[4S] and UCCD[6S] methods, which consider energy corrections for missing single excitations through fourth- and sixth-order in MBPT, respectively. We also apply the same methodology to the electron-pair-restricted ansatz, but the improvements are only marginal. Our findings show that augmenting UCCD with these post hoc perturbative corrections can lead to UCCSD-quality results.

2.
J Phys Chem A ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194317

RESUMO

Coupled cluster theory has had a momentous impact on the ab initio prediction of molecular properties, and remains a staple ingratiate in high-accuracy thermochemical model chemistries. However, these methods require inclusion of at least some connected quadruple excitations, which generally scale at best as O(N9) with the number of basis functions. It is very difficult to predict, a priori, the effect correlation of past CCSD(T) on a given reaction energy. The purpose of this work is to examine cost-effective quadruple corrections based on the factorization theorem of the many-body perturbation theory that may address these challenges. We show that the O(N7) factorized CCSD(TQf) method introduces minimal error to predicted correlation and reaction energies as compared to the O(N9) CCSD(TQ). Further, we examine the performance of Goodson's continued fraction method in the estimation of CCSDT(Q)Λ contributions to reaction energies as well as a "new" method related to %TAE[(T)] that we refer to as a scaled perturbation estimator. We find that the scaled perturbation estimator based upon CCSD(TQf)/cc-pVDZ is capable of predicting CCSDT(Q)Λ/cc-pVDZ contributions to reaction energies with an average error of 0.07 kcal mol-1 and an L2D of 0.52 kcal mol-1 when applied to a test-suite of nearly 3000 reactions. This offers a means by which to reliably "ballpark" how important post-CCSD(T) contributions are to reaction energies while incurring no more than CCSD(T) formal cost and a little mental math.

3.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38832905

RESUMO

A major difficulty in quantum simulation is the adequate treatment of a large collection of entangled particles, synonymous with electron correlation in electronic structure theory, with coupled cluster (CC) theory being the leading framework for dealing with this problem. Augmenting computationally affordable low-rank approximations in CC theory with a perturbative account of higher-rank excitations is a tractable and effective way of accounting for the missing electron correlation in those approximations. This is perhaps best exemplified by the "gold standard" CCSD(T) method, which bolsters the baseline CCSD with the effects of triple excitations using considerations from many-body perturbation theory (MBPT). Despite this established success, such a synergy between MBPT and the unitary analog of CC theory (UCC) has not been explored. In this work, we propose a similar approach wherein converged UCCSD amplitudes are leveraged to evaluate energy corrections associated with triple excitations, leading to the UCCSD[T] method. In terms of quantum computing, this correction represents an entirely classical post-processing step that improves the energy estimate by accounting for triple excitation effects without necessitating new quantum algorithm developments or increasing demand for quantum resources. The rationale behind this choice is shown to be rigorous by studying the properties of finite-order UCC energy functionals, and our efforts do not support the addition of the fifth-order contributions as in the (T) correction. We assess the performance of these approaches on a collection of small molecules and demonstrate the benefits of harnessing the inherent synergy between MBPT and UCC theories.

4.
Phys Chem Chem Phys ; 26(10): 8013-8037, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38390989

RESUMO

Coupled-cluster theory has revolutionized quantum chemistry. It has provided the framework to effectively solve the problem of electron correlation, the main focus of the field for over 60 years. This has enabled ab initio quantum chemistry to provide predictive quality results for most quantities of interest that are obtainable from first-principle calculations. The best that one can do in a basis is the 'full CI,' the exact solution of the non-relativistic Schrödinger equation or, if need be, the relativistic Dirac equation. With due regard to converging the basis set and adequate consideration of higher clusters and relativity in a calculation, virtually predictive results can be obtained. But in addition to its numerical performance, coupled-cluster theory also offers a conceptually new, many-body foundation for the theory that should be appreciated by all practitioners. The latter is emphasized in this perspective, leading to the 'evolution toward simplicity' in the title. The ultimate theory will benefit from the several features that are uniquely exact in coupled-cluster theory and its equation-of-motion (EOM-CC) extensions.

5.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38180255

RESUMO

EA-EOM-CCSD electron affinities and LUMO energies of various Kohn-Sham density functional theory (DFT) methods are calculated for an a priori IP benchmark set of 64 small, closed-shell molecules. The purpose of these calculations was to investigate whether the QTP KS-DFT functionals can emulate EA-EOM-CC with only a mean-field approximation. We show that the accuracy of DFT-relative to CCSD-improves significantly when elements of correlated orbital theory are introduced into the parameterization to define the QTP family of functionals. In particular, QTP(02), which has only a single range separation parameter, provides results accurate to a MAD of <0.15 eV for the whole set of 64 molecules compared to EA-EOM-CCSD, far exceeding the results from the non-QTP family of density functionals.

6.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37655762

RESUMO

It is known that some non-dynamic effects of electron correlation can be included in coupled cluster theory using a tailoring technique that separates the effects of non-dynamic and dynamic correlations. Recently, the simple pCCD (pair coupled cluster doubles) wavefunction was shown to provide good results for some non-dynamic correlation problems, such as bond-breaking, in a spin-adapted way with no active space selection. In this paper, we report a study of excited states using "tailored coupled cluster singles and doubles," to attempt to use pCCD as a kernel for more complete coupled-cluster singles and doubles (CCSD) results for excited states. Several excited states are explored from those primarily due to single excitations to those dominated by doubly excited states and from singlet-triplet splittings for some diradical states. For the first two situations, tailored pCCD-TCCSD offers no improvement over equation of motion-CCSD. However, when we explore the singlet-triplet gap of diradical molecules that are manifestly multi-reference, a pCCD kernel provides improved results, particularly with generalized valence bond orbitals.

7.
J Chem Phys ; 158(13): 134107, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031127

RESUMO

Iterative diagonalization of large matrices to search for a subset of eigenvalues that may be of interest has become routine throughout the field of quantum chemistry. Lanczos and Davidson algorithms hold a monopoly, in particular, owing to their excellent performance on diagonally dominant matrices. However, if the eigenvalues happen to be clustered inside overlapping Gershgorin disks, the convergence rate of both strategies can be noticeably degraded. In this work, we show how Davidson, Jacobi-Davidson, Lanczos, and preconditioned Lanczos correction vectors can be formulated using the reduced partitioning procedure, which takes advantage of the inherent flexibility promoted by Brillouin-Wigner perturbation (BW-PT) theory's resolvent operator. In doing so, we establish a connection between various preconditioning definitions and the BW-PT resolvent operator. Using Natural Localized Molecular Orbitals (NLMOs) to construct Configuration Interaction Singles (CIS) matrices, we study the impact the preconditioner choice has on the convergence rate for these comparatively dense matrices. We find that an attractive by-product of preconditioning the Lanczos algorithm is that the preconditioned variant only needs 21%-35% and 54%-61% of matrix-vector operations to extract the lowest energy solution of several Hartree-Fock- and NLMO-based CIS matrices, respectively. On the other hand, the standard Davidson preconditioning definition seems to be generally optimal in terms of requisite matrix-vector operations.

8.
J Phys Chem B ; 127(15): 3556-3583, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018238

RESUMO

Despite being a staple of synthetic plastics and biomolecules, helical polymers are scarcely studied with Gaussian-basis-set ab initio electron-correlated methods on an equal footing with molecules. This article introduces an ab initio second-order many-body Green's function [MBGF(2)] method with nondiagonal, frequency-dependent Dyson self-energy for infinite helical polymers using screw-axis-symmetry-adapted Gaussian-spherical-harmonics basis functions. Together with the Gaussian-basis-set density-functional theory for energies, analytical atomic forces, translational-period force, and helical-angle force, it can compute correlated energy, quasiparticle energy bands, structures, and vibrational frequencies of an infinite helical polymer, which smoothly converge at the corresponding oligomer results. These methods can handle incommensurable structures, which have an infinite translational period and are hard to characterize by any other method, just as efficiently as commensurable structures. We apply them to polyethylene (2/1 helix), polyacetylene (Peierls' system) and polytetrafluoroethylene (13/6 helix) to establish the quantitative accuracy of MBGF(2)/cc-pVDZ in simulating their (angle-resolved) ultraviolet photoelectron spectra and of B3LYP/cc-pVDZ or 6-31G** in reproducing their structures, infrared and Raman band positions, phonon dispersions, and (coherent and incoherent) inelastic neutron scattering spectra. We then predict the same properties for infinitely catenated chains of nitrogen or oxygen and discuss their possible metastable existence under ambient conditions. They include planar zigzag polyazene (N2)x (Peierls' system), 11/3-helical isotactic polyazane (NH)x, 9/4-helical isotactic polyfluoroazane (NF)x, and 7/2-helical polyoxane (O)x as potential high-energy-density materials.

9.
J Phys Chem A ; 127(3): 828-834, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36640093

RESUMO

To treat doubly excited states, the treatment of triple excitations is considered necessary in the framework of equation-of-motion coupled cluster (EOM-CC) methods. We investigate models without explicit triples and seek quantitative measure for the performance of EOM based on CC with singles and doubles (CCSD) or modified CCSD (Distinguishable Cluster Approximation) approaches for states with predominant double excitation character. We also test the efficacy of including triples in perturbative manner through EOM-CCSD(T) and in an iterative way through EOM-CCSDT-3 method. Extended similarity transformed EOM-CCSD(EXT-STEOM-CCSD) method is also tested and provides superior quality results at comparatively low cost. We use the QUEST2 benchmark set of double excitations proposed by Loos et al. [ J. Chem. Theory Comput.2019, 15, 1939] to investigate the performance of methods such as EOM-CCSD, EOM-DCSD, EXT-STEOM-CCSD, ΔCCSD, and ΔDCSD. We also test a tailored CC approach, ΔpairCCD-TCCSD.

10.
J Chem Phys ; 157(9): 094107, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075732

RESUMO

The core excitation energies and related principal ionization energies are obtained for selected molecules using several density functionals and compared with benchmark equation-of-motion coupled cluster (EOM-CC) results. Both time-dependent and time-independent formulations of excitation spectra in the time-dependent density functional theory and the EOM-CC are employed to obtain excited states that are not always easily accessible with the time-independent method. Among those functionals, we find that the QTP(00) functional, which is only parameterized to reproduce the five IPs of water, provides excellent core IPs and core excitation energies, consistently yielding better excitation and ionization energies. We show that orbital eigenvalues of KS density functional theory play an important role in determining the accuracy of the excitation and photoelectron spectra.

11.
J Chem Phys ; 156(20): 201102, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649829

RESUMO

Solution of dark, doubly excited states using equation-of-motion coupled-cluster (EOM-CC) usually equires at least triple excitations or even quadruples beyond the standard singles and doubles (EOM-CCSD) for an appropriate treatment. A new route to obtain these doubly excited states using EOM-CCSD is demonstrated. Traditionally, EOM-CC is performed on a closed shell reference state that has a well-described single reference CC wavefunction. In this Communication, we attempt to use low spin open-shell states such as the MS = 0 triplet and open-shell singlet as a reference state. Using this intermediate excited state as a reference state provides us with the benefit of obtaining a doubly excited state, as a single excitation at the cost of EOM-CCSD.

12.
J Chem Phys ; 156(20): 204308, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649853

RESUMO

Interest in ab initio property prediction of π-conjugated polymers for technological applications places significant demand on "cost-effective" and conceptual computational methods, particularly effective, one-particle theories. This is particularly relevant in the case of Kohn-Sham Density Functional Theory (KS-DFT) and its new competitors that arise from correlated orbital theory, the latter defining the QTP family of DFT functionals. This study presents large, ab initio equation of motion-coupled cluster calculations using the massively parallel ACESIII to target the fundamental bandgap of two prototypical organic polymers, trans-polyacetylene (tPA) and polyacene (Ac), and provides an assessment of the new quantum theory project (QTP) functionals for this problem. Further results focusing on the 1Ag (1Ag), 1Bu (1B2u), and 3Bu (3B2u) excited states of tPA (Ac) are also presented. By performing calculations on oligomers of increasing size, extrapolations to the thermodynamic limit for the fundamental and all excitation gaps, as well as estimations of the exciton binding energy, are made. Thermodynamic-limit results for a combination of "optimal" and model geometries are presented. Calculated results for excitations that are adequately described using a single-particle model illustrate the benefits of requiring a KS-DFT functional to satisfy the Bartlett ionization potential theorem.

13.
J Chem Phys ; 156(9): 094107, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259910

RESUMO

Significant effort has been devoted to benchmarking isotropic hyperfine coupling constants for both wavefunction and density-based approaches in recent years, as accurate theoretical predictions aid the fitting of experimental model Hamiltonians. However, literature examining the predictive quality of a Density Functional Theory (DFT) functional abiding by the Bartlett IP condition is absent. In an attempt to rectify this, we report isotropic hyperfine coupling constant predictions of 24 commonly used DFT functionals on a total of 56 radicals, with the intent of exploring the successes and failures of the Quantum Theory Project (QTP) line of DFT functionals (i.e., CAM-QTP00, CAM-QTP01, CAM-QTP02, and QTP17) for this property. Included in this benchmark study are both small and large organic radicals as well as transition metal complexes, all of which have been studied to some extent in prior work. Subsequent coupled-cluster singles and doubles (CCSD) and CCSD withperturbative triples [CCSD(T)] calculations on small and large organic radicals show modest improvement as compared to prior work and offer an additional avenue for evaluation of DFT functional performance. We find that the QTP17 and CAM-QTP00 functionals consistently underperform, despite being parameterized to satisfy an IP eigenvalue condition primarily focused on inner shell electrons. On the other hand, the CAM-QTP01 functional is the most accurate functional in both organic radical datasets. Furthermore, both CAM-QTP01 and CAM-QTP02 are the most accurate functionals tested on the transition metal dataset. A significant portion of functionals were found to have comparable errors (within 5-15 MHz), but the hybrid class of DFT functionals maintains a consistently optimal balance between accuracy and precision across all datasets.

14.
J Chem Phys ; 155(9): 094103, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496593

RESUMO

We present the time-independent (TI) and time-dependent (TD) equation of motion coupled-cluster (EOM-CC) oscillator strengths not limited to those obtained by the dipole approximation. For the conventional TI-EOM-CC, we implement all the terms in the multipole expansion through second order that contributes to the oscillator strength. These include contributions such as magnetic dipole, electric quadrupole, electric octupole, and magnetic quadrupole. In TD-EOM-CC, we only include the quadrupole moment contributions. This augments our previous work [Y. C. Park, A. Perera, and R. J. Bartlett, J. Chem. Phys. 151, 164117 (2019)]. The inclusion of the quadrupole contributions (and all the other contributions through second order in the case of TI-EOM-CCSD) enables us to obtain the intensities for the pre-edge transitions in the metal K-edge spectra, which are dipole inactive. The TI-EOM-CCSD and TD-EOM-CCSD spectra of Ti4+ atoms are used to showcase the implementation of the second-order oscillator strengths. The origin of 1s → e and 1s → t2 in core spectra from iron tetrachloride and titanium tetrachloride is discussed and compared with the experiment.

15.
J Chem Phys ; 154(7): 074106, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607901

RESUMO

Exchange-correlation (XC) functionals from Density Functional Theory (DFT) developed under the rigorous arguments of Correlated Orbital Theory (COT) address the Devil's Triangle of prominent errors in Kohn-Sham (KS) DFT. At the foundation of this triangle lie the incorrect one-particle spectrum, the lack of integer discontinuity, and the self-interaction error. At the top level, these failures manifest themselves in incorrect charge transfer and Rydberg excitation energies, along with poor activation barriers. Accordingly, the Quantum Theory Project (QTP) XC functionals have been created to address several of the long-term issues encountered in KS theory and its Time Dependent DFT (TDDFT) variant for electronic excitations. Recognizing that COT starts with a correct one-particle spectrum, a condition imposed on the QTP functionals by means of minimum parameterization, the question that arises is how does this affect the electronically excited states? Among up to 28 XC functionals considered, the QTP family provides one of the smallest mean absolute deviations for charge-transfer excitations while also showing excellent results for Rydberg states. However, there is some room for improvement in the case of excitation energies to valence states, which are systematically underestimated by all functionals investigated. An alternative path for better treatment of excitation energies, mainly for valence states, is offered by using orbital energies from QTP functionals, especially by CAM-QTP-02 and LC-QTP. In this case, the deviations from the reference data can be reduced approximately by half.

16.
J Chem Phys ; 153(23): 234101, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353322

RESUMO

We revisit the connection between equation-of-motion coupled cluster (EOM-CC) and random phase approximation (RPA) explored recently by Berkelbach [J. Chem. Phys. 149, 041103 (2018)] and unify various methodological aspects of these diverse treatments of ground and excited states. The identity of RPA and EOM-CC based on the ring coupled cluster doubles is established with numerical results, which was proved previously on theoretical grounds. We then introduce new approximations in EOM-CC and RPA family of methods, assess their numerical performance, and explore a way to reap the benefits of such a connection to improve on excitation energies. Our results suggest that addition of perturbative corrections to account for double excitations and missing exchange effects could result in significantly improved estimates.

17.
J Chem Phys ; 153(23): 234103, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353328

RESUMO

A full configuration interaction calculation (FCI) ultimately defines the innate molecular orbital description of a molecule. Its density matrix and the natural orbitals obtained from it quantify the difference between having N-dominantly occupied orbitals in a reference determinant for a wavefunction to describe N-correlated electrons and how many of those N-electrons are left to the remaining virtual orbitals. The latter provides a measure of the multi-determinantal character (MDC) required to be in a wavefunction. MDC is further split into a weak correlation part and a part that indicates stronger correlation often called multi-reference character (MRC). If several virtual orbitals have high occupation numbers, then one might argue that these additional orbitals should be allowed to have a larger role in the calculation, as in MR methods, such as MCSCF, MR-CI, or MR-coupled-cluster (MR-CC), to provide adequate approximations toward the FCI. However, there are problems with any of these MR methods that complicate the calculations compared to the uniformity and ease of application of single-reference CC calculations (SR-CC) and their operationally single-reference equation-of-motion (EOM-CC) extensions. As SR-CC theory is used in most of today's "predictive" calculations, an assessment of the accuracy of SR-CC at some truncation of the cluster operator would help to quantify how large an issue MRC actually is in a calculation, and how it might be alleviated while retaining the convenient SR computational character of CC/EOM-CC. This paper defines indices that identify MRC situations and help assess how reliable a given calculation is.

18.
J Chem Phys ; 152(18): 184105, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414257

RESUMO

The advanced concepts in electronic structure (ACES) programs are products of the Bartlett research group at the University of Florida. They consist of ACES II, which is serial, and ACES III and Aces4, which are massively parallel. All three programs are publically available free of charge. The focus of the ACES implementations is coupled cluster theory and many-body-perturbation theory. We give an overview of the ACES programs, discuss the many features of the program systems, and document the number of benchmarks.

19.
J Chem Phys ; 151(16): 160901, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675863

RESUMO

The attraction density functional theory (DFT) has for electronic structure theory is that it is easier to do computationally than ab initio, correlated wavefunction methods, due to its effective one-particle structure. On the contrary, ab initio theorists insist on the ability to converge to the right answer in appropriate limits, but this requires a treatment of the reduced two-particle density matrix. DFT avoids that by appealing to an "existence" theorem (not a constructive one) that all its effects are subsummed into a DFT functional of the one-particle density. However, the existence of thousands of DFT functionals emphasizes that there is no satisfactory way to systematically improve the Kohn-Sham (KS) version as most changes in parameterization or formulation seldom lead to a new functional that is genuinely better than others. Some researchers in the DFT community try to address this issue by imposing conditions rigorously derived from exact DFT considerations, but to date, no one has shown how this route will ever lead to converged results even for the ground state, much less for all the other electronic states obtained from time-dependent DFT that are critically important for chemistry. On the contrary, coupled-cluster (CC) theory and its equation-of-motion extensions provide rigorous results for both that KS-DFT methods are attempting to emulate. How to use them and their exact formal properties to tie CC theory to an effective one-particle form is the target of this perspective. This route addresses the devil's triangle of KS-DFT problems: the one-particle spectrum, self-interaction, and the integer discontinuity.

20.
J Chem Phys ; 151(16): 164117, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675901

RESUMO

This paper presents core excitation spectra from coupled-cluster (CC) theory obtained from both a time-independent and a new time-dependent formalism. The conventional time-independent CC formulation for excited states is the equation-of-motion (EOM-CC) method whose eigenvalues and eigenvectors describe the core excited states. An alternative computational procedure is offered by a time-dependent CC description. In that case, the dipole transition operator is expressed in the CC effective Hamiltonian form and propagated with respect to time. The absorption spectrum is obtained from the CC dipole autocorrelation function via a Fourier transformation. Comparisons are made among the time-dependent results obtained from second-order perturbation theory, to coupled cluster doubles and their linearized forms (CCD and LCCD), to CC singles and doubles (CCSD) and the linearized form (LCCSD). In the time-independent case, considerations of triples (EOM-CCSDT) and quadruples (EOM-CCSDTQ) are used to approach sub-electron volt accuracy. A particular target is the allyl radical, as an example of an open-shell molecule. As the results have to ultimately be the same, the two procedures offer a complementary approach toward analyzing experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA