Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(5): 932-943.e8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759619

RESUMO

Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate contributions to purine nucleotides from salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic or lymph node T cells) synthesize purines de novo. Shortage of 1C units for T cell purine synthesis is accordingly a potential bottleneck for anti-tumor immunity. Supplementing 1C units by infusing formate drives formate assimilation into purines in tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling kinetic control of formate production. Safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade in MC38 tumors, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.


Assuntos
Carbono , Camundongos Endogâmicos C57BL , Purinas , Animais , Camundongos , Purinas/química , Purinas/farmacologia , Carbono/química , Carbono/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Formiatos/química , Formiatos/metabolismo , Formiatos/farmacologia , Metanol/química , Metanol/farmacologia , Feminino , Humanos , Linhagem Celular Tumoral
2.
Metabolites ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668312

RESUMO

Orbitrap mass spectrometry in full scan mode enables the simultaneous detection of hundreds of metabolites and their isotope-labeled forms. Yet, sensitivity remains limiting for many metabolites, including low-concentration species, poor ionizers, and low-fractional-abundance isotope-labeled forms in isotope-tracing studies. Here, we explore selected ion monitoring (SIM) as a means of sensitivity enhancement. The analytes of interest are enriched in the orbitrap analyzer by using the quadrupole as a mass filter to select particular ions. In tissue extracts, SIM significantly enhances the detection of ions of low intensity, as indicated by improved signal-to-noise (S/N) ratios and measurement precision. In addition, SIM improves the accuracy of isotope-ratio measurements. SIM, however, must be deployed with care, as excessive accumulation in the orbitrap of similar m/z ions can lead, via space-charge effects, to decreased performance (signal loss, mass shift, and ion coalescence). Ion accumulation can be controlled by adjusting settings including injection time and target ion quantity. Overall, we suggest using a full scan to ensure broad metabolic coverage, in tandem with SIM, for the accurate quantitation of targeted low-intensity ions, and provide methods deploying this approach to enhance metabolome coverage.

3.
Nat Chem Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448734

RESUMO

Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is that glycolysis is more efficient in terms of ATP production per unit mass of protein (that is, faster). Through quantitative flux analysis and proteomics, we find, however, that mitochondrial respiration is actually more proteome efficient than aerobic glycolysis. This is shown across yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead of aerobic glycolysis being valuable for fast ATP production, it correlates with high glycolytic protein expression, which promotes hypoxic growth. Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow respiratory cells during oxygen limitation. We accordingly propose that aerobic glycolysis emerges from cells maintaining a proteome conducive to both aerobic and hypoxic growth.

4.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961420

RESUMO

Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate the contributions to purine nucleotides of salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic T cells) synthesize purines de novo. Purine synthesis requires two 1C units, which come from serine catabolism and circulating formate. Shortage of 1C units is a potential bottleneck for anti-tumor immunity. Elevating circulating formate drives its usage by tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling control of formate-production kinetics. In MC38 tumors, safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.

5.
Nat Rev Cancer ; 23(12): 863-878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907620

RESUMO

Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.


Assuntos
Redes e Vias Metabólicas , Neoplasias , Humanos , Ciclo do Ácido Cítrico , Isótopos , Neoplasias/metabolismo , Microambiente Tumoral
7.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
8.
Nat Chem Biol ; 17(12): 1262-1270, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663942

RESUMO

DNA deaminase enzymes play key roles in immunity and have recently been harnessed for their biotechnological applications. In base editors (BEs), the combination of DNA deaminase mutator activity with CRISPR-Cas localization confers the powerful ability to directly convert one target DNA base into another. While efforts have been made to improve targeting efficiency and precision, all BEs so far use a constitutively active DNA deaminase. The absence of regulatory control over promiscuous deaminase activity remains a major limitation to accessing the widespread potential of BEs. Here, we reveal sites that permit splitting of DNA cytosine deaminases into two inactive fragments, whose reapproximation reconstitutes activity. These findings allow for the development of split-engineered BEs (seBEs), which newly enable small-molecule control over targeted mutator activity. We show that the seBE strategy facilitates robust regulated editing with BE scaffolds containing diverse deaminases, offering a generalizable solution for temporally controlling precision genome editing.


Assuntos
Nucleosídeo Desaminases/química , Biotecnologia , Sistemas CRISPR-Cas , Citosina/química , DNA/química , Quebras de DNA de Cadeia Dupla , Escherichia coli , Edição de Genes , Conformação de Ácido Nucleico , Nucleosídeo Desaminases/genética , Sirolimo/química
9.
Nat Metab ; 3(7): 896-908, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211182

RESUMO

Altered metabolic activity contributes to the pathogenesis of a number of diseases, including diabetes, heart failure, cancer, fibrosis and neurodegeneration. These diseases, and organismal metabolism more generally, are only partially recapitulated by cell culture models. Accordingly, it is important to measure metabolism in vivo. Over the past century, researchers studying glucose homeostasis have developed strategies for the measurement of tissue-specific and whole-body metabolic activity (pathway fluxes). The power of these strategies has been augmented by recent advances in metabolomics technologies. Here, we review techniques for measuring metabolic fluxes in intact mammals and discuss how to analyse and interpret the results. In tandem, we describe important findings from these techniques, and suggest promising avenues for their future application. Given the broad importance of metabolism to health and disease, more widespread application of these methods holds the potential to accelerate biomedical progress.


Assuntos
Metaboloma , Metabolômica/métodos , Animais , Suscetibilidade a Doenças , Metabolismo Energético , Homeostase , Humanos , Mamíferos , Redes e Vias Metabólicas , Especificidade de Órgãos
10.
Cell Metab ; 33(2): 367-378.e5, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33472024

RESUMO

Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use 13C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis. Yet circulating glucose highly labels glycolytic intermediates in only a few tissues: blood, spleen, diaphragm, and soleus muscle. Most glycolytic intermediates in the bulk of body tissue, including liver and quadriceps muscle, come instead from glycogen. Gluconeogenesis contributes less but also broadly to glycolytic intermediates, and its flux persists with physiologic feeding (but not hyperinsulinemic clamp). Instead of suppressing gluconeogenesis, feeding activates oxidation of circulating glucose and lactate to maintain glucose homeostasis. Thus, the bulk of the body slowly breaks down internally stored glycogen while select tissues rapidly catabolize circulating glucose to lactate for oxidation throughout the body.


Assuntos
Diafragma/metabolismo , Músculo Esquelético/metabolismo , Baço/metabolismo , Animais , Glicemia/metabolismo , Isótopos de Carbono , Gluconeogênese , Glicogênio/sangue , Glicogênio/metabolismo , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Cell Metab ; 32(4): 676-688.e4, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32791100

RESUMO

Mammalian organs are nourished by nutrients carried by the blood circulation. These nutrients originate from diet and internal stores, and can undergo various interconversions before their eventual use as tissue fuel. Here we develop isotope tracing, mass spectrometry, and mathematical analysis methods to determine the direct sources of circulating nutrients, their interconversion rates, and eventual tissue-specific contributions to TCA cycle metabolism. Experiments with fifteen nutrient tracers enabled extensive accounting for both circulatory metabolic cycles and tissue TCA inputs, across fed and fasted mice on either high-carbohydrate or ketogenic diet. We find that a majority of circulating carbon flux is carried by two major cycles: glucose-lactate and triglyceride-glycerol-fatty acid. Futile cycling through these pathways is prominent when dietary content of the associated nutrients is low, rendering internal metabolic activity robust to food choice. The presented in vivo flux quantification methods are broadly applicable to different physiological and disease states.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Ácido Láctico/metabolismo , Triglicerídeos/metabolismo , Animais , Ciclo do Ácido Cítrico , Camundongos , Camundongos Endogâmicos C57BL
12.
Mol Cell ; 73(3): 519-532.e4, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554946

RESUMO

Transcriptional regulation occurs via changes to rates of different biochemical steps of transcription, but it remains unclear which rates are subject to change upon biological perturbation. Biochemical studies have suggested that stimuli predominantly affect the rates of RNA polymerase II (Pol II) recruitment and polymerase release from promoter-proximal pausing. Single-cell studies revealed that transcription occurs in discontinuous bursts, suggesting that features of such bursts like frequency and intensity could also be regulated. We combined Pol II chromatin immunoprecipitation sequencing (ChIP-seq) and single-cell transcriptional measurements to show that an independently regulated burst initiation step is required before polymerase recruitment can occur. Using a number of global and targeted transcriptional regulatory perturbations, we showed that biological perturbations regulated both burst initiation and polymerase pause release rates but seemed not to regulate polymerase recruitment rate. Our results suggest that transcriptional regulation primarily acts by changing the rates of burst initiation and polymerase pause release.


Assuntos
Células-Tronco Embrionárias Murinas/enzimologia , RNA Polimerase II/metabolismo , RNA/biossíntese , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Ativação Transcricional , Animais , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Modelos Genéticos , Ligação Proteica , RNA/genética , RNA Polimerase II/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Fatores de Tempo
13.
Mol Cell ; 66(1): 102-116.e7, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388437

RESUMO

Bromodomain and extraterminal motif (BET) proteins are pharmacologic targets for the treatment of diverse diseases, yet the roles of individual BET family members remain unclear. We find that BRD2, but not BRD4, co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites whereas BRD2 is dispensable for CTCF occupancy. Disruption of a CTCF/BRD2-occupied element positioned between two unrelated genes enables regulatory influence to spread from one gene to another, suggesting that CTCF and BRD2 form a transcriptional boundary. Accordingly, single-molecule mRNA fluorescence in situ hybridization (FISH) reveals that, upon site-specific CTCF disruption or BRD2 depletion, expression of the two genes becomes increasingly correlated. HiC shows that BRD2 depletion weakens boundaries co-occupied by CTCF and BRD2, but not those that lack BRD2. These findings indicate that BRD2 supports boundary activity, and they raise the possibility that pharmacologic BET inhibitors can influence gene expression in part by perturbing domain boundary function.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Sistemas CRISPR-Cas , Linhagem Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Edição de Genes/métodos , Hibridização in Situ Fluorescente , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Imagem Individual de Molécula/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
14.
Science ; 354(6316): 1160-1165, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789795

RESUMO

Blocking Programmed Death-1 (PD-1) can reinvigorate exhausted CD8 T cells (TEX) and improve control of chronic infections and cancer. However, whether blocking PD-1 can reprogram TEX into durable memory T cells (TMEM) is unclear. We found that reinvigoration of TEX in mice by PD-L1 blockade caused minimal memory development. After blockade, reinvigorated TEX became reexhausted if antigen concentration remained high and failed to become TMEM upon antigen clearance. TEX acquired an epigenetic profile distinct from that of effector T cells (TEFF) and TMEM cells that was minimally remodeled after PD-L1 blockade. This finding suggests that TEX are a distinct lineage of CD8 T cells. Nevertheless, PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the TEX epigenetic landscape. These data indicate that epigenetic fate inflexibility may limit current immunotherapies.


Assuntos
Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/genética , Epigênese Genética , Memória Imunológica/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos/transplante , Linhagem da Célula/genética , Reprogramação Celular/imunologia , Feminino , Redes Reguladoras de Genes , Imunoterapia , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica
15.
J Immunol ; 197(4): 1118-26, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402695

RESUMO

Staphylococcus aureus is both a commensal and a pathogen, and USA300, a strain that is usually methicillin-resistant but can sometimes be methicillin-susceptible, has been causing skin and soft tissue infections (SSTIs) in epidemic proportions among otherwise healthy individuals. Although many people are colonized with S. aureus strains, including some with USA300, few of these colonized individuals develop SSTIs. This prompts the hypothesis that infections may develop in individuals with somewhat reduced innate and/or adaptive immune responses to S. aureus, either because prior S. aureus colonization has dampened such responses selectively, or because of more globally reduced immune reactivity. In this study, we analyzed the S. aureus colonization status and PBMC responses to innate and adaptive stimuli in 72 patients with SSTIs and 143 uninfected demographically matched controls. Contrary to the hypothesis formulated, PBMCs from infected patients obtained at the time of infection displayed enhanced innate cytokine production upon restimulation compared with PBMCs from controls, a difference that disappeared after infection resolution. Notably, PBMCs from patients infected with a documented USA300 SSTI displayed greater innate cytokine production than did those from patients infected with documented non-USA300 genotypes. Moreover, colonization with USA300 in infected patients, regardless of their infecting strain, correlated with increased production of IL-10, IL-17A, and IL-22 compared with patients colonized with non-USA300 subtypes. Thus, our results demonstrate that infected patients associated with USA300 either as an infecting strain, or as a colonizing strain, have systemic immune responses of greater magnitude than do those associated with other S. aureus subtypes.


Assuntos
Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Adolescente , Adulto , Antibacterianos/uso terapêutico , Clindamicina/uso terapêutico , Feminino , Humanos , Masculino , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Adulto Jovem
16.
J Clin Invest ; 126(7): 2736-44, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27322054

RESUMO

Transplantation is the only cure for end-stage organ failure, but without immunosuppression, T cells rapidly reject allografts. While genetic disparities between donor and recipient are major determinants of the kinetics of transplant rejection, little is known about the contribution of environmental factors. Because colonized organs have worse transplant outcome than sterile organs, we tested the influence of host and donor microbiota on skin transplant rejection. Compared with untreated conventional mice, pretreatment of donors and recipients with broad-spectrum antibiotics (Abx) or use of germ-free (GF) donors and recipients resulted in prolonged survival of minor antigen-mismatched skin grafts. Increased graft survival correlated with reduced type I IFN signaling in antigen-presenting cells (APCs) and decreased priming of alloreactive T cells. Colonization of GF mice with fecal material from untreated conventional mice, but not from Abx-pretreated mice, enhanced the ability of APCs to prime alloreactive T cells and accelerated graft rejection, suggesting that alloimmunity is modulated by the composition of microbiota rather than the quantity of bacteria. Abx pretreatment of conventional mice also delayed rejection of major antigen-mismatched skin and MHC class II-mismatched cardiac allografts. This study demonstrates that Abx pretreatment prolongs graft survival, suggesting that targeting microbial constituents is a potential therapeutic strategy for enhancing graft acceptance.


Assuntos
Rejeição de Enxerto , Microbiota , Transplante de Pele , Pele/microbiologia , Aloenxertos , Animais , Antibacterianos/uso terapêutico , Células Apresentadoras de Antígenos , Feminino , Regulação da Expressão Gênica , Sobrevivência de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Leucócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Órgãos , Linfócitos T/metabolismo , Transplante Homólogo , Resultado do Tratamento
17.
Genes Dev ; 30(12): 1423-39, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27340175

RESUMO

During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states.


Assuntos
Ciclo Celular/genética , Fase G1/genética , Genoma/genética , Mitose/genética , Ativação Transcricional/genética , Animais , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , DNA Intergênico/genética , Elementos Facilitadores Genéticos/genética , Eritroblastos/citologia , Camundongos , Regiões Promotoras Genéticas/genética , Regulação para Cima
18.
Mol Cell ; 62(2): 237-247, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27067601

RESUMO

Mammalian genes transcribe RNA not continuously, but in bursts. Transcriptional output can be modulated by altering burst fraction or burst size, but how regulatory elements control bursting parameters remains unclear. Single-molecule RNA FISH experiments revealed that the ß-globin enhancer (LCR) predominantly augments transcriptional burst fraction of the ß-globin gene with modest stimulation of burst size. To specifically measure the impact of long-range chromatin contacts on transcriptional bursting, we forced an LCR-ß-globin promoter chromatin loop. We observed that raising contact frequencies increases burst fraction but not burst size. In cells in which two developmentally distinct LCR-regulated globin genes are cotranscribed in cis, burst sizes of both genes are comparable. However, allelic co-transcription of both genes is statistically disfavored, suggesting mutually exclusive LCR-gene contacts. These results are consistent with competition between the ß-type globin genes for LCR contacts and suggest that LCR-promoter loops are formed and released with rapid kinetics.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Elementos Facilitadores Genéticos , Transcrição Gênica , Ativação Transcricional , Globinas beta/genética , Animais , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Eritroblastos/metabolismo , Eritropoese/genética , Humanos , Hibridização in Situ Fluorescente , Cinética , Região de Controle de Locus Gênico , Camundongos , Cultura Primária de Células , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção , Globinas beta/metabolismo
19.
Transplant Direct ; 1(8)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26609546

RESUMO

BACKGROUND: There is considerable interest in investigating the role of the microbiota in various diseases, including transplant rejection. Germ-free (GF) and gnotobiotic mice are powerful models for this line of investigation, but performing surgery within the confines of a sterile housing isolator is exceptionally challenging. Development of rigorous protocols to be able to remove axenic mice from their sterile isolator for surgical intervention in a Class II biological safety cabinet (BSC) without compromising sterility would give many investigators access to this model and broaden possible studies. However, it is assumed that GF animals will most often become colonized with environmental microbiota upon leaving the isolator. In this study, we tested whether applying sterile techniques for animal transport out of the isolator and skin transplantation in a Class II BSC could maintain animal sterility. METHODS: Quantitative polymerase chain reaction (qPCR) of the bacterial 16S ribosomal RNA gene, and cultures in various aerobic and anaerobic conditions were used to probe for bacterial contamination before and after transplantation. RESULTS: Out of 28 surgeries performed, only 3 mice acquired bacterial contamination coincident with a transient shutdown of the ventilation system in the BSC. CONCLUSION: Our results indicate that skin transplantation can be successfully performed in GF mice using sterile conditions for transport and surgery in a Class II BSC, but requires continuous positive airflow. Our approach paves the way to investigating the role of the microbiota in modulating immune responses to skin allografts as a first model of solid organ transplantation in GF mice.

20.
Artigo em Inglês | MEDLINE | ID: mdl-26370411

RESUMO

The study of nuclear structure falls between the fields of cell biology and molecular biology and draws on techniques from both fields. In recent years, many exciting advances have been made in these areas, including single-molecule and superresolution imaging and the development of chromosome conformation capture (3C)-based technologies, which have brought the advent of genome-wide analysis of chromatin structure and contacts. However, many questions remain as to the function of nuclear structures, in particular their influence on transcription. Here we describe studies that have directly manipulated nuclear architecture at various levels and thus have clarified the causal influence of structure on transcription. We will also highlight open questions in the field, most notably regarding our understanding of the dynamics and variability in nuclear structure and its influence on gene expression.


Assuntos
Núcleo Celular , Cromatina/metabolismo , Cromossomos , Regulação da Expressão Gênica , Animais , Genoma , Humanos , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...