Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 12(9): 1912-1932, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28837132

RESUMO

Biochemical systems in which multiple components take part in a given reaction are of increasing interest. Because the interactions between these different components are complex and difficult to predict from basic reaction kinetics, it is important to test for the effect of variations in the concentration for each reagent in a combinatorial manner. For example, in PCR, an increase in the concentration of primers initially increases template amplification, but large amounts of primers result in primer-dimer by-products that inhibit the amplification of the template. Manual titration of biochemical mixtures rapidly becomes costly and laborious, forcing scientists to settle for suboptimal concentrations. Here we present a droplet-based microfluidics platform for mapping of the concentration space of up to three reaction components followed by detection with a fluorescent readout. The concentration of each reaction component is read through its internal standard (barcode), which is fluorescent but chemically orthogonal. We describe in detail the workflow, which comprises the following: (i) production of the microfluidics chips, (ii) preparation of the biochemical mixes, (iii) their mixing and compartmentalization into water-in-oil emulsion droplets via microfluidics, (iv) incubation and imaging of the fluorescent barcode and reporter signals by fluorescence microscopy and (v) image processing and data analysis. We also provide recommendations for choosing the appropriate fluorescent markers, programming the pressure profiles and analyzing the generated data. Overall, this platform allows a researcher with a few weeks of training to acquire ∼10,000 data points (in a 1D, 2D or 3D concentration space) over the course of a day from as little as 100-1,000 µl of reaction mix.


Assuntos
Bioensaio/instrumentação , Bioensaio/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Titulometria/instrumentação , Titulometria/métodos , Desenho de Equipamento , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador/métodos , Tensoativos/química
2.
Med Sci (Paris) ; 31(1): 84-92, 2015 Jan.
Artigo em Francês | MEDLINE | ID: mdl-25658735

RESUMO

Polymerase chain reaction based techniques have been widely used in laboratory settings. Several applications in oncology, virology or prenatal diagnosis require highly sensitive detection methods, which cannot be achieved with conventional techniques. Digital PCR (dPCR) was developed from the association of PCR and limiting dilution procedures. It is based on the compartmentalization of DNA molecules in small volumes. Controlling the size and the content of each compartment is crucial to obtain a high sensitivity with a single molecule resolution. Microfluidics offers promising tools to isolate DNA fragments such as microdroplets, microchambers or microwells with volumes ranging from few picoliters to nanoliters. The review provides an overview of recent developments of microfluidics dPCR platforms and how this technology can influence the management of cancer patients.


Assuntos
Análise Mutacional de DNA/métodos , Microfluídica , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Computadores , Análise Mutacional de DNA/instrumentação , Frequência do Gene , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Microfluídica/instrumentação , Microfluídica/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Reação em Cadeia da Polimerase/instrumentação
3.
Org Biomol Chem ; 11(1): 16-26, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23076879

RESUMO

Widespread in nature, oligonucleotide-templated reactions of phosphodiester bond formation have inspired chemists who are now applying this elegant strategy to the catalysis of a broad range of otherwise inefficient reactions. This review highlights the increasing diversity of chemical reactions that can be efficiently catalysed by an oligonucleotide template, using Watson-Crick base-pairing to bring both reagents in close enough proximity to react, thus increasing significantly their effective molarity. The applications of this elegant concept for nucleic acid sensing and controlled organic synthesis will also be discussed.


Assuntos
Oligonucleotídeos/química , Pareamento de Bases , Catálise , Fluorescência , Estrutura Molecular , Ácidos Nucleicos/síntese química , Ácidos Nucleicos/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Peptídeos/síntese química , Peptídeos/química , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...