Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wirel Pers Commun ; 126(2): 1633-1648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160318

RESUMO

The necessity of the rapid evolution of wireless communications, with continuously increasing demands for higher data rates and capacity Zheng (Big datadriven optimization for mobile networks toward 5g 30:44-51, 2016), is constantly augmenting the complexity of radio frequency (RF) transceiver architecture. A significant component in the configuration of such complex radio transceivers is the power amplifier(PA). Multiple distributed PAs are now common in proposed RF architectures. PAs exhibit non linear behaviour, causing signal distortion in transmission. Behavioural models offer a concise representation of a PAs characteristic performance which is extremely useful in simulating performance of multiple nonlinear power amplifiers. A considerable drawback with using the Recursive Least Squares (RLS) technique is that the instability of the coefficients during the training of the model. This manuscript provides a computationally efficient technique to detect the onset of instability during adaptive RLS training and subsequently to inform the decision to cease training of dynamic memory polynomial based behavioural models, to avoid the onset of instability. The proposed technique does not require modification of the RLS algorithm, merely an observation of the pre-exsisting autocorrelation function based update. This technique is experimentally validated using four different signal modulation schemes, LTE OFDM, 5G-NR, DVBS2X and WCDMA.

2.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300363

RESUMO

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky-Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky-Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.


Assuntos
Algoritmos , Redes Neurais de Computação , Luz , Razão Sinal-Ruído , Análise Espectral Raman
3.
Appl Spectrosc ; 73(8): 893-901, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31008665

RESUMO

Cosmic ray artifacts may be present in all photo-electric readout systems. In spectroscopy, they present as random unidirectional sharp spikes that distort spectra and may have an affect on post-processing, possibly affecting the results of multivariate statistical classification. A number of methods have previously been proposed to remove cosmic ray artifacts from spectra but the goal of removing the artifacts while making no other change to the underlying spectrum is challenging. One of the most successful and commonly applied methods for the removal of comic ray artifacts involves the capture of two sequential spectra that are compared in order to identify spikes. The disadvantage of this approach is that at least two recordings are necessary, which may be problematic for dynamically changing spectra, and which can reduce the signal-to-noise (S/N) ratio when compared with a single recording of equivalent duration due to the inclusion of two instances of read noise. In this paper, a cosmic ray artefact removal algorithm is proposed that works in a similar way to the double acquisition method but requires only a single capture, so long as a data set of similar spectra is available. The method employs normalized covariance in order to identify a similar spectrum in the data set, from which a direct comparison reveals the presence of cosmic ray artifacts, which are then replaced with the corresponding values from the matching spectrum. The advantage of the proposed method over the double acquisition method is investigated in the context of the S/N ratio and is applied to various data sets of Raman spectra recorded from biological cells.

4.
Appl Opt ; 57(22): E118-E130, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117908

RESUMO

Measuring the concentration of multiple chemical components in a low-volume aqueous mixture by Raman spectroscopy has received significant interest in the literature. All of the contributions to date focus on the design of optical systems that facilitate the recording of spectra with high signal-to-noise ratio by collecting as many Raman scattered photons as possible. In this study, the confocal Raman microscope setup is investigated for multicomponent analysis. Partial least-squares regression is used to quantify physiologically relevant aqueous mixtures of glucose, lactic acid, and urea. The predicted error is 17.81 mg/dL for glucose, 10.6 mg/dL for lactic acid, and 7.6 mg/dL for urea, although this can be improved with increased acquisition times. A theoretical analysis of the method is proposed, which relates the numerical aperture and the magnification of the microscope objective, as well as the confocal pinhole size, to the performance of the technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...