Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biol Chem ; 288(1): 59-68, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23166326

RESUMO

Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.


Assuntos
Fator de Crescimento Insulin-Like II/química , Neoplasias/metabolismo , Animais , Proliferação de Células , Fibroblastos/citologia , Regulação Neoplásica da Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Fator de Crescimento Insulin-Like I/química , Espectrometria de Massas/métodos , Camundongos , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/química , Transdução de Sinais
2.
J Protein Chem ; 21(4): 243-53, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12168695

RESUMO

D-Pro14 melittin was synthesized to investigate the effect of increasing the angle of the bend in the hinge region between the helical segments of the molecule. Structural analysis by nuclear magnetic resonance indicated that, in methanol, the molecule consisted of two helices separated at Pro14, as in melittin. However, the two helices in D-Pro14 melittin were laterally displaced relative to each other by approximately 7 A, and in addition, there was a small rotation of the carboxyl-terminal helix relative to the amino-terminal helix around the long axis of the molecule. The peptide had less than 5% of the cytolytic activity of melittin. Modification of Arg22 with the 2,2,5,7,8-pentamethyl-chroman-6-sulphonyl (pmc) group restored hemolytic activity to close to that of unmodified melittin. Replacement of Arg22 with Phe was less effective in restoring hemolytic activity. Electron-paramagnetic resonance studies suggest that there is a positive correlation between hemolytic activity of the peptides and interaction with phospholipid bilayers.


Assuntos
Meliteno/química , Meliteno/farmacologia , Morte Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Lipídeos , Linfoma/patologia , Meliteno/análogos & derivados , Metanol , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...