Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 235(1): 357-67, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22421533

RESUMO

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the Central Nervous System which is characterized by multifocal demyelinated lesions dispersed throughout the brain. Although white matter lesions have been the most extensively studied, cortical demyelinaton lesions are also detected in MS brains. Cuprizone (CPZ)-induced demyelination in rodents has been widely used as a model for MS. Most of these studies focus on oligodendrocyte-rich structures, such as the corpus callosum (CC) and the cerebellar peduncles. However, it has been recently described that CPZ administration in mice also produces cortical demyelination, resembling some of the lesions found in MS patients. In this work we used CPZ-demyelinating model in Wistar rats to study demyelination in cortical forebrain areas. At the ultrastructural level, demyelination in the cortex was observed before detectable myelin loss in the subcortical white matter. During the course of CPZ intoxication Myelin Basic Protein immunodetection was decreased in cortical layers I-III due to a reduction in the number of cortical oligodendrocytes (OL). Oligodendroglial loss in CPZ-intoxicated rats correlated with an increase in the number of Glial Fibrillary Acidic Protein positive astrocytes and a shift in the location of Carbonic Anhydrase II from OL to astrocytes. After removal of CPZ from the diet, we evaluate intranasal Thyroid hormone (TH) effects on the progression of cortical lesions. As previously reported in the CC, TH treatment also accelerates remyelination rate in the cortex compared to rats undergoing spontaneous remyelination. Our results suggest that manipulation of TH levels could be considered as a strategy to promote remyelination process in the cortex and to prevent neuronal irreversible damage in patients suffering from MS.


Assuntos
Córtex Cerebral/patologia , Doenças Desmielinizantes/induzido quimicamente , Bainha de Mielina/efeitos dos fármacos , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Hormônios Tireóideos/administração & dosagem , Administração Intranasal , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Córtex Cerebral/efeitos dos fármacos , Cuprizona , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos , Ratos Wistar
2.
J Comp Neurol ; 518(12): 2261-83, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20437527

RESUMO

Cuprizone (bis-cyclohexanone oxaldihydrazone) was previously shown to induce demyelination in white matter enriched brain structures. In the present study we used the cuprizone demyelination model in transgenic mice expressing the enhanced green fluorescent protein (GFP) under the 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) promoter. The use of these particular transgenic mice allows easy detection of cells belonging to the entire oligodendroglial (OLG) lineage, ranging from OLG precursors to mature myelinating OLGs. We were able to evaluate the precise extent of oligodendroglial cell damage and recovery within the murine adult central nervous system (CNS) after inducing demyelination by acute cuprizone intoxication. A generalized loss of GFP+ cells was observed after cuprizone exposure and correlated with a decline in myelin basic protein (MBP) expression. OLGs were depleted in many brain areas that were previously thought to be unaffected by cuprizone treatment. Thus, in addition to the well-known cuprizone effects on the medial corpus callosum, we also found a loss of GFP+ cells in most brain structures, particularly in the caudatus putamen, cortex, anterior commissure, olfactory bulb, hippocampus, optic chiasm, brainstem, and cingulum. Loss of GFP+ cells was accompanied by extensive astrogliosis and microglial activation, although neurons were not affected. Interestingly, cuprizone-treated animals showed both activation of GFAP expression and a higher proliferation rate in subventricular zone cells. A week after cuprizone removal from the diet, GFP+ oligodendroglial cells began repopulating the damaged structures. GFP expression precedes that of MBP and allows OLG detection before myelin restoration.


Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/patologia , Oligodendroglia/patologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Contagem de Células , Proliferação de Células , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Proteína Básica da Mielina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA