Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 237(2): 254-264, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527297

RESUMO

The surgical needle insertion process is widely applied in medical interference. During the insertion process, the inhomogeneity and denseness of the soft tissues make it tough to detect the essential tissue damage, a rupture occurs that contains huge forces and material deformations. This study is very important, as all the above-mentioned factors are very significant for modern invasive surgery so that the success rate of the surgery can increase and the patient recovers smoothly. This investigation intends to perform minimally invasive surgical (MIS) procedures and reduce the living tissue damage while performing the biopsy, PCNL, etc. A fracture mechanics method was analyzed to create a needle insertion model which can estimate the needle insertion force during inset in tissue-like PVA gel. The force model was calculated by needle insertion experimentally, and also estimated the needle tip geometry, and diameter influences the fracture toughness. Validate exp. results with simulation results and other papers. It is observed that needle diameter has a significant effect on fracture toughness, whereas the insertion velocity has a slight impact on the fracture toughness. During the rotational needle insertion process, the winds-up of the gel occurs and the diameter of the hole was increasing with increased rpm. Maximum insertion force was noticed in the 27 G needle at 5 mm/s. The interaction function will be less at the maximum fracture development region.


Assuntos
Materiais Biocompatíveis , Agulhas , Humanos , Fenômenos Mecânicos , Simulação por Computador , Procedimentos Cirúrgicos Minimamente Invasivos
2.
Int J Artif Organs ; 46(1): 40-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36397288

RESUMO

Needle insertion is executed in numerous medical and brachytherapy events. Exact needle insertion into inhomogeneous soft biological tissue is of useful importance due to its significance in clinical diagnosis (especially percutaneous) and treatments. The surgical needles used in such processes can deflect during the percutaneous process. Needle deflecting which affects needle - soft tissue interface and needle controllability have a crucial role in establishment precision. In this paper, we have analyzed a mechanics-based model both rotational and non-rotational needle insertion, and studied the deflection phenomenon in both insertion cases, we validated it with a real-time nonlinear Dassault Systèmes® ABAQUS simulation model. For definite contact force, the maximum the contact stiffness was, the minimum it inserted, the cohesive surface model was used to investigate the needle insertion analysis, where the fracture point was defined by a failure strain and with the help of the in, the fully failed components would be removed. Using living tissue comparable PVA gel materials, the needle insertion force model is developed from insertion experimentations with the help of two different processes (rotational and non-rotational needle insertion). In a rotational needle, deflection is less than in a non-rotational needle. The preliminary insertion was observed in the rotational needle at 1.261 mm (experiment), and 1.538 mm (simulation), and for non-rotational needle insertion, the initial insertion was noticed at 1.756 mm (experiment) and 1.982 mm (simulation). The main aim of this study is to navigate the surgical needle in an accurate way to reduce the erroneousness for a clinical diagnosis like anesthesia, brachytherapy, biopsy, and modern microsurgery operation.


Assuntos
Braquiterapia , Agulhas , Simulação por Computador , Fenômenos Mecânicos , Modelos Anatômicos
3.
Proc Inst Mech Eng H ; 236(10): 1465-1477, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36113436

RESUMO

The insertion of the surgical needle in soft tissue has involved significant interest in the current time because of its purpose in minimally invasive surgery (MIS) and percutaneous events like biopsies, PCNL, and brachytherapy. This study represents a review of the existing condition of investigation on insertion of a surgical needle in biological living soft tissue material. As observes the issue from numerous phases, like, analysis of the cutting forces modeling (insertion), tissue material deformation, analysis of the needle deflection for the period of the needle insertion, and the robot-controlled insertion procedures. All analysis confirms that the total needle insertion force is the total of dissimilar forces spread sideways the shaft of the insertion needle for example cutting force, stiffness force, and frictional force. Various investigations have analyzed all these kinds of forces during the needle insertion process. The force data in several measures are applied for recognizing the biological tissue materials as the needle is penetrated or for path planning. The deflection of the needle during insertion and tissue material deformation is the main trouble for defined needle placing and efforts have been prepared to model them. Applying existing models numerous insertion methods are established that are discussed in this review.


Assuntos
Braquiterapia , Agulhas , Braquiterapia/métodos , Fricção , Fenômenos Mecânicos , Procedimentos Cirúrgicos Minimamente Invasivos
4.
Proc Inst Mech Eng H ; 234(2): 223-231, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31774361

RESUMO

Fabrication of hollow channels with user-defined dimensions and patterns inside viscoelastic, gel-type materials is required for several applications, especially in biomedical engineering domain. These include objectives of obtaining vascularized tissues and enclosed or subsurface microfluidic devices. However, presently there is no suitable manufacturing technology that can create such channels and networks in a gel structure. The advent of three-dimensional bioprinting has opened new possibilities for fabricating structures with complex geometries. However, application of this technique to fabricate internal hollow channels in viscoelastic material has not been yet explored to a great extent. In this article, we present the theoretical modeling/background of a proposed manufacturing paradigm through which hollow channels can be conveniently fabricated inside a gel structure. We propose that a tip connected to a robotic arm can be moved in X-, Y-, and Z-axis as per the desired design. The tip can be moved by a magnet or mechanical force. If the tip is further trailed with porous tube and moved inside the viscoelastic material, corresponding internal channels can be fabricated. To achieve this, however, force modeling to understand the forces that will be required to move the tip inside viscoelastic material should be known and understood. Therefore, in our first attempt, we developed the computational force modeling of the tip movement inside gels with different viscoelastic properties to create the channels.


Assuntos
Desenho de Equipamento/métodos , Géis/química , Engenharia Tecidual/instrumentação , Análise de Elementos Finitos , Agulhas , Porosidade , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...