Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 103, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884869

RESUMO

Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.

2.
Dalton Trans ; 43(42): 16105-14, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25247815

RESUMO

Hybrid nanocomposites based on N-doped SrTiO3 nanoparticles wrapped in g-C3N4 nanosheets were successfully prepared by a facile and reproducible polymeric citrate and thermal exfoliation method. The results clearly indicated that the N-doped SrTiO3 nanoparticles are successfully wrapped in layers of the g-C3N4 nanosheets. The g-C3N4/N-doped SrTiO3 nanocomposites showed absorption edges at longer wavelengths compared with the pure g-C3N4 as well as N-doped SrTiO3. The hybrid nanocomposites exhibit an improved photocurrent response and photocatalytic activity under visible light irradiation. Interestingly, the hybrid nanocomposite possesses high photostability and reusability. Based on experimental results, the possible mechanism for prolonged lifetime of the photoinduced charge carrier was also discussed. The high performance of the g-C3N4/N-doped SrTiO3 photocatalysts is due to the synergic effect at the interface of g-C3N4 and N-doped SrTiO3 hetero/nanojunction including the high separation efficiency of the charge carrier, band energy matching and the suppressed recombination rate. Therefore, the hybrid photocatalyst could be of potential interest for water splitting and environmental remediation under natural sunlight.

3.
Langmuir ; 30(11): 3199-208, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24588721

RESUMO

Silica-supported tantalum oxide (ST) hollow spheres were designed for photocatalytic applications in the UV range of 4.1 to 4.8 eV. These nanostructures with a variable diameter of 100-250 nm and shell thickness of 24-58 nm were obtained by the hydrothermal treatment of tantalum isopropoxide and tetraethylorthosilicate at 120 °C for 48 h in the presence of cetyl trimethyl ammonium bromide, which was used as a capping agent. The maximum observed surface area was found to be 610 m(2)/g and pore size distribution of ST hollow spheres varied from 13.4 to 19.0 nm. Lewis acidity of silica and the contact area between SiO2 and Ta2O5 plays a crucial role in controlling the photocatalytic properties of the ST hollow spheres. We observe a remarkable 6× enhancement in the photoactivity of silica-supported tantalum oxide hollow spheres compared to pure Ta2O5.


Assuntos
Óxidos/química , Dióxido de Silício/química , Tantálio/química , Adsorção , Amônia/química , Cetrimônio , Compostos de Cetrimônio/química , Modelos Moleculares , Conformação Molecular , Porosidade
4.
Nanoscale ; 6(9): 4830-42, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24664127

RESUMO

N-doped ZnO/g-C3N4 hybrid core-shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C3N4 hybrid core-shell nanoplates with an average diameter of 50 nm and the g-C3N4 shell thickness can be tuned by varying the content of loaded g-C3N4. The direct contact of the N-doped ZnO surface and g-C3N4 shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core-shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C3N4. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C3N4 photocatalyst was discussed. Interestingly, the hybrid core-shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C3N4 including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core-shell composite photocatalysts with g-C3N4 as shell material.

5.
J Fluoresc ; 23(6): 1287-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23846303

RESUMO

Using hollow silica nanoparticles we demonstrate a simple and highly efficient way of removing hydrophilic dye (Rhodamine B) from water by encapsulation within these hollow spheres. The hollow silica spheres were obtained by using a surfactant templated procedure. Using fluorescence spectroscopy, we also show the evidence of the dye being absorbed within the hollow core of the silica shell (which is crucial for many applications) and differentiate from the adsorption of dye on the surface of the silica shell. It was found that that up to 94% of the hydrophilic dye could be entrapped using these hollow shells within 72 h of exposure. Fluorescence spectroscopy shows a red shift in the dye encapsulated in the hollow silica which is due to aggregation of the dye and enables us to follow quantitatively the uptake of the dye molecules by the silica shells with time. The evidence for the encapsulation of the dye in these hollow spheres was reinforced by carrying out a comparative study, using solid silica particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...