Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11041, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744905

RESUMO

Recent results demonstrate the dynamical peculiarities of the quantum chaos within the hybrid systems by chaotic parameters and probe the pattern formation under the influence of condensation. The complex dynamic behavior of the considered systems was determined with numerical simulation and presented an efficient technique that studied fractional systems comprising chaos-coherence fractions. The findings divulge the peculiar association between the coherence structure and the correlations at finite relative momenta. Thus the present study helps to explore the partially chaos hybrid systems in order to stimulate the experimental applications of nonlinear phenomena. The coherent-chaotic parameters can be measured by examining the chaos peculiarities that possess explicit relations with the condensations to demonstrate the environs of the physical systems. We investigate the influence of the multiplicities, chaos, momentum and temperature of the nonlinear system on the coherent-chaotic normalized correlations. The chaotic parameters are suppressed considerably with the coherence fraction and it appears numerically zero at maximum condensation and one at ideal chaos emissions. We procure that the meaningful parameters decrease significantly with the multiplicity of the nonlinear systems and increase with the momentum in the specified regimes. The identical multiplicity leads to contemplating the coherence and thus the normalized chaotic parameters within its spectacular influences exhibit significance worth contemplating in earnest. The findings underscore the significance of cogitating correlations in deciphering the nonlinear system characteristics and bestowing extraordinary perceptiveness into the convoluted essence of complex systems. The contemplated methodology can be applied to evaluating and analyzing the nonlinear systems and such an innovative approach computes the problems of celestial mechanics, heartbeats and chemical reactions in engineering and medical fields.

2.
Heliyon ; 9(3): e14209, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36923897

RESUMO

The fixed-dose combination of Amlodipine Besylate (ADB) with Perindopril Tertbutylamine (PTBA) drug is used to treat patients with mild-to-moderate hypertension. In recent times researchers are interested to find the efficient analytical method development and validation for the simultaneous determination of ADB and PTBA in a fixed-dose, film-coated tablet. Therefore, the current study was performed with a reverse-phase liquid chromatography method developed to simultaneously analyze ADB and PTBA in film-coated tablets as fixed-dose combinations. The linearity of the proposed method was calculated by preparing six different mixtures of both ADB and PTBA in the mobile phase. The concentration of both the analytes was analyzed at 56mg/100 mL to 84mg/100 mL and 32mg/100 mL to 48mg/100 mL, respectively. The ratio of acetonitrile and phosphate buffer was 35:65. The flow rate was adjusted to 1.5 ml per minute to reduce the retention time. The validation study was performed for the parameters specificity, linearity, precision, range, limit of detection, limit of quantification, accuracy/biasness, and robustness. The relative percentage standard deviation for Perindopril Tertbutyl amine was 0.148%, and for Amlodipine is 0.312%. These results show that the advanced analysis method for simultaneous analysis of fixed-dose is precise. The theoretical IR spectra were also calculated by Gaussian 9.2 by employing the B3LYP functional at density functional theory (DFT) level study. All these parameters studied in this work authenticate the effectiveness of the developed validation method and ensure its repeatability/reproducibility accordingly. To the best of our knowledge, this is the first time to develop a new fast, and easy method for simultaneous identification and quantification of ADB and PTBA by high-performance liquid chromatography (HPLC) with a time-efficient and cost-effective approach.

3.
Sci Rep ; 11(1): 19683, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608168

RESUMO

The non-fullerene acceptors A1-A5 with diflourobenzene or quinoline core (bridge) unit, donor cyclopenta[1,2-b:3,4-b']dithiophene unit and 2-(2-methylene-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile as acceptor unit with additional phenyl, fulvene or thieno[3,2-d]pyrimidinyl 5-oxide groups have been designed through DFT calculations. The optimization of molecular geometries were performed with density functional theory (DFT) at B3LYP 6-31G (d,p) level of theory. The frontier molecular orbital (FMO) energies, band gap energies and dipole moments (ground and excited state) have been calculated to probe the photovoltaic properties. The band gap (1.42-2.01 eV) and dipole moment values (5.5-18. Debye) showed that these designed acceptors are good candidates for organic solar cells. Time-Dependent Density Functional Theory (TD-DFT) results showed λmax (wave length at maximum absorption) value (611-837 nm), oscillator strength (f) and excitation energies (1.50-2.02 eV) in gas phase and in CHCl3 solvent (1.48-1.89 eV) using integral equation formalism variant (IEFPCM) model. The λmax in CHCl3 showed marginal red shift for all designed acceptors compared with gas phase absorption. The partial density of states (PDOS) has been plotted by using multiwfn which showed that all the designed molecules have more electronic distribution at the donor moiety and lowest at the central bridge. The reorganization energies of electron (λe) (0.0007 eV to 0.017 eV), and the hole reorganization energy values (0.0003 eV to - 0.0403 eV) were smaller which suggested that higher charged motilities. The blends of acceptors A1-A5 with donor polymer D1 provided open circuit voltage (Voc) and ∆HOMO off-set of the HOMO of donor and acceptors. These blends showed 1.04 to 1.5 eV values of Voc and 0 to 0.38 eV ∆HOMO off set values of the donor-acceptor bends which indicate improved performance of the cell. Finally, the blend of D1-A4 was used for the study of distribution of HOMO and LUMO. The HOMO were found distributed on the donor polymer (D1) while the A4 acceptor was found with LUMO distribution. Based on λmax values, and band gap energies (Eg), excitation energies (Ex), reorganization energies; the A3 and A4 will prove good acceptor molecules for the development of organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...