Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402935, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976560

RESUMO

This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.

2.
Adv Mater ; : e2404784, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38958110

RESUMO

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.

3.
Adv Healthc Mater ; : e2401252, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889433

RESUMO

Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.

4.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626916

RESUMO

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Assuntos
Crizotinibe , Neoplasias Pulmonares , Nanopartículas Magnéticas de Óxido de Ferro , Microambiente Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas Magnéticas de Óxido de Ferro/química , Humanos , Camundongos , Crizotinibe/farmacologia , Crizotinibe/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino
5.
Chemistry ; 30(31): e202304375, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563634

RESUMO

The clinical translation of polysarcosine (pSar) as polyethylene glycol (PEG) replacement in the development of novel nanomedicines creates a broad demand of polymeric material in high-quality making high-purity sarcosine N-carboxyanhydride (Sar-NCA) as monomer for its production inevitable. Within this report, we present the use of triethyloxonium tetrafluoroborate in Sar-NCA synthesis with focus on amino acid and chloride impurities to avoid the sublimation of Sar-NCAs. With a view towards upscaling into kilogram or ton scale, a new methodology of monomer purification is introduced by utilizing the Meerwein's Salt triethyloxonium tetrafluoroborate to remove chloride impurities by covalent binding and converting chloride ions into volatile products within a single step. The novel straightforward technique enables access to monomers with significantly reduced chloride content (<100 ppm) compared to Sar-NCA derived by synthesis or sublimation. The derived monomers enable the controlled-living polymerization in DMF and provide access to pSar polymers with Poisson-like molecular weight distribution within a high range of chain lengths (Xn 25-200). In conclusion, the reported method can be easily applied to Sar-NCA synthesis or purification of commercially available pSar-NCAs and eases access to well-defined hetero-telechelic pSar polymers.


Assuntos
Cloretos , Polimerização , Sarcosina , Sarcosina/química , Sarcosina/análogos & derivados , Cloretos/química , Polietilenoglicóis/química , Polímeros/química , Boratos/química , Anidridos/química , Peptídeos
6.
Small ; : e2310781, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488770

RESUMO

Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.

7.
Nucl Med Biol ; 128-129: 108877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232579

RESUMO

Brain pretargeted nuclear imaging for the diagnosis of various neurodegenerative diseases is a quickly developing field. The tetrazine ligation is currently the most explored approach to achieve this goal due to its remarkable properties. In this work, we evaluated the performance of F-537-Tetrazine, previously developed by Biogen, and N-(3-[18F]fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine, previously developed in our group, thereby allowing for the direct comparison of these two imaging probes. The evaluation included synthesis, radiolabeling and a comparison of the physicochemical properties of the compounds. Furthermore, their performance was evaluated by in vitro and in vivo pretargeting models. This study indicated that N-(3-[18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine might be more suited for brain pretargeted imaging.


Assuntos
Aminas , Compostos Heterocíclicos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem
8.
Nanomaterials (Basel) ; 13(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764575

RESUMO

Exposure to nanoparticles is inevitable as they become widely used in industry, cosmetics, and foods. However, knowledge of their (patho)physiological effects on biological entry routes of the human body and their underlying molecular mechanisms is still fragmented. Here, we examined the molecular effects of amorphous silica nanoparticles (aSiNPs) on cell lines mimicking the alveolar-capillary barrier of the lung. After state-of-the-art characterization of the used aSiNPs and the cell model, we performed cell viability-based assays and a protein analysis to determine the aSiNP-induced cell toxicity and underlying signaling mechanisms. We revealed that aSiNPs induce apoptosis in a dose-, time-, and size-dependent manner. aSiNP-induced toxicity involves the inhibition of pro-survival pathways, such as PI3K/AKT and ERK signaling, correlating with reduced expression of the anti-apoptotic protein Survivin on the protein and transcriptional levels. Furthermore, induced Survivin overexpression mediated resistance against aSiNP-toxicity. Thus, we present the first experimental evidence suggesting Survivin as a critical cytoprotective resistor against silica-based nanotoxicity, which may also play a role in responses to other NPs. Although Survivin's relevance as a biomarker for nanotoxicity needs to be demonstrated in vivo, our data give general impetus to investigate the pharmacological modulation of Survivin`s functions to attenuate the harmful effects of acute or chronic inhalative NP exposure.

9.
Pharmaceutics ; 15(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631282

RESUMO

Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To further exploit the potential of mRNA therapeutics, better control of the relationship between LNP formulation composition with internal structure and transfection efficiency in vitro is necessary. We compared two well-established ionizable lipids, namely DODMA and MC3, in combination with two helper lipids, DOPE and DOPC, and two polymer-grafted lipids, either with polysarcosine (pSar) or polyethylene glycol (PEG). In addition to standard physicochemical characterization (size, zeta potential, RNA accessibility), small-angle X-ray scattering (SAXS) was used to analyze the structure of the LNPs. To assess biological activity, we performed transfection and cell-binding assays in human peripheral blood mononuclear cells (hPBMCs) using Thy1.1 reporter mRNA and Cy5-labeled mRNA, respectively. With the SAXS measurements, we were able to clearly reveal the effects of substituting the ionizable and helper lipid on the internal structure of the LNPs. In contrast, pSar as stealth moieties affected the LNPs in a different manner, by changing the surface morphology towards higher roughness. pSar LNPs were generally more active, where the highest transfection efficiency was achieved with the LNP formulation composition of MC3/DOPE/pSar. Our study highlights the utility of pSar for improved mRNA LNP products and the importance of pSar as a novel stealth moiety enhancing efficiency in future LNP formulation development. SAXS can provide valuable information for the rational development of such novel formulations by elucidating structural features in different LNP compositions.

10.
Biomacromolecules ; 24(8): 3545-3556, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449781

RESUMO

Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) [pSar-b-pCys(SO2Et)] were employed. While the pCys(SO2Et) chain lengths varied from Xn = 17 to 30, bivalent (derivatives of dihydrolipoic acid) and trivalent (sarcosine/cysteine pentapeptide) cross-linkers have been applied. Asymmetrical flow field-flow fraction (AF4) displayed the absence of aggregates in human plasma, yet for non-cross-linked PM and CCPMs cross-linked with dihydrolipoic acid at [pCys(SO2Et)]17, increasing the cross-linking density or the pCys(SO2Et) chain lengths led to stable CCPMs. Interestingly, circulation time and biodistribution in mice of non-cross-linked and bivalently cross-linked CCPMs are comparable, while the trivalent peptide cross-linkers enhance the circulation half-life from 11 to 19 h.


Assuntos
Micelas , Polímeros , Humanos , Animais , Camundongos , Distribuição Tecidual , Polímeros/química , Plasma
11.
Adv Mater ; 35(21): e2210704, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934295

RESUMO

Translating innovative nanomaterials to medical products requires efficient manufacturing techniques that enable large-scale high-throughput synthesis with high reproducibility. Drug carriers in medicine embrace a complex subset of tasks calling for multifunctionality. Here, the synthesisof pro-drug-loaded core cross-linked polymeric micelles (CCPMs) in a continuous flow processis reported, which combines the commonly separated steps of micelle formation, core cross-linking, functionalization, and purification into a single process. Redox-responsive CCPMs are formed from thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) and functional cross-linkers based on dihydrolipoic acid hydrazide for pH-dependent release of paclitaxel. The precisely controlled microfluidic process allows the production of spherical micelles (Dh  = 35 nm) with low polydispersity values (PDI < 0.1) while avoiding toxic organic solvents and additives with unfavorable safety profiles. Self-assembly and cross-linking via slit interdigital micromixers produces 350-700 mg of CCPMs/h per single system, while purification by online tangential flow filtration successfully removes impurities (unimer ≤ 0.5%). The formed paclitaxel-loaded CCPMs possess the desired pH-responsive release profile, display stable drug encapsulation, an improved toxicity profile compared to Abraxane (a trademark of Bristol-Myers Squibb), and therapeutic efficiency in the B16F1-xenotransplanted zebrafish model. The combination of reactive polymers, functional cross-linkers, and microfluidics enables the continuous-flow synthesis of therapeutically active CCPMs in a single process.


Assuntos
Micelas , Pró-Fármacos , Animais , Paclitaxel/química , Reprodutibilidade dos Testes , Peixe-Zebra , Polímeros/química , Portadores de Fármacos/química , Polietilenoglicóis/química
12.
RSC Med Chem ; 14(3): 444-453, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970152

RESUMO

Pretargeting is a powerful nuclear imaging strategy to achieve enhanced imaging contrast for nanomedicines and reduce the radiation burden to healthy tissue. Pretargeting is based on bioorthogonal chemistry. The most attractive reaction for this purpose is currently the tetrazine ligation, which occurs between trans-cyclooctene (TCO) tags and tetrazines (Tzs). Pretargeted imaging beyond the blood-brain barrier (BBB) is challenging and has not been reported thus far. In this study, we developed Tz imaging agents that are capable of ligating in vivo to targets beyond the BBB. We chose to develop 18F-labeled Tzs as they can be applied to positron emission tomography (PET) - the most powerful molecular imaging technology. Fluorine-18 is an ideal radionuclide for PET due to its almost ideal decay properties. As a non-metal radionuclide, fluorine-18 also allows for development of Tzs with physicochemical properties enabling passive brain diffusion. To develop these imaging agents, we applied a rational drug design approach. This approach was based on estimated and experimentally determined parameters such as the BBB score, pretargeted autoradiography contrast, in vivo brain influx and washout as well as on peripheral metabolism profiles. From 18 initially developed structures, five Tzs were selected to be tested for their in vivo click performance. Whereas all selected structures clicked in vivo to TCO-polymer deposited into the brain, [18F]18 displayed the most favorable characteristics with respect to brain pretargeting. [18F]18 is our lead compound for future pretargeted neuroimaging studies based on BBB-penetrant monoclonal antibodies. Pretargeting beyond the BBB will allow us to image targets in the brain that are currently not imageable, such as soluble oligomers of neurodegeneration biomarker proteins. Imaging of such currently non-imageable targets will allow early diagnosis and personalized treatment monitoring. This in turn will accelerate drug development and greatly benefit patient care.

13.
J Control Release ; 356: 1-13, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803765

RESUMO

Messenger RNA (mRNA) is revolutionizing the future of therapeutics in a variety of diseases, including neurological disorders. Lipid formulations have shown to be an effective platform technology for mRNA delivery and are the basis for the approved mRNA vaccines. In many of these lipid formulations, polyethylene glycol (PEG)-functionalized lipid provides steric stabilization and thus plays a key role in improving the stability both ex vivo and in vivo. However, immune responses towards PEGylated lipids may compromise the use of those lipids in some applications (e.g., induction of antigen specific tolerance), or within sensitive tissues (e.g., central nervous system (CNS)). With respect to this issue, polysarcosine (pSar)-based lipopolymers were investigated as an alternative to PEG-lipid in mRNA lipoplexes for controlled intracerebral protein expression in this study. Four polysarcosine-lipids with defined sarcosine average molecular weight (Mn = 2 k, 5 k) and anchor diacyl chain length (m = 14, 18) were synthesized, and incorporated into cationic liposomes. We found that the content, pSar chain length and carbon tail lengths of pSar-lipids govern the transfection efficiency and biodistribution. Increasing carbon diacyl chain length of pSar-lipid led up to 4- and 6-fold lower protein expression in vitro. When the length of either pSar chain or lipid carbon tail increased, the transfection efficiency decreased while the circulation time was prolonged. mRNA lipoplexes containing 2.5% C14-pSar2k resulted in the highest mRNA translation in the brain of zebrafish embryos through intraventricular injection, while C18-pSar2k-liposomes showed a comparable circulation with DSPE-PEG2k-liposomes after systemic administration. To conclude, pSar-lipid enable efficient mRNA delivery, and can substitute PEG-lipids in lipid formulations for controlled protein expression within the CNS.


Assuntos
Lipossomos , Sarcosina , Animais , RNA Mensageiro , Peixe-Zebra , Distribuição Tecidual , Polietilenoglicóis , Transfecção , Lipídeos
14.
J Control Release ; 354: 851-868, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681282

RESUMO

Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Humanos , Animais , Peixe-Zebra , Micelas , Tuberculose/tratamento farmacológico , Antituberculosos , Camundongos Endogâmicos , Polímeros/uso terapêutico
17.
Macromol Rapid Commun ; 43(12): e2100892, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35174569

RESUMO

The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins, and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This review highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polímeros/química , Espectrometria de Fluorescência/métodos
18.
Macromol Rapid Commun ; 43(12): e2100698, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34967473

RESUMO

ABC-type triblock copolymers are a rising platform especially for oligonucleotide delivery as they offer an additional functionality besides the anyhow needed functions of shielding and complexation. The authors present a polypept(o)ide-based triblock copolymer synthesized by amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), comprising a shielding block A of polysarcosine (pSar), a poly(S-ethylsulfonyl-l-cystein) (pCys(SO2 Et)) block B for bioreversible and chemo-selective cross-linking and a poly(l-lysine) (pLys) block C for complexation to construct polyion complex (PIC) micelles as vehicle for small interfering RNA (siRNA) delivery. The self-assembly behavior of ABC-type triblocks is investigated to derive correlations between block lengths of the polymer and PIC micelle structure, showing an enormous effect of the ß-sheet forming pCys(SO2 Et) block. Moreover, the block enables the introduction of disulfide cross-links by reaction with multifunctional thiols to increase stability against dilution. The right content of the additional block leads to well-defined cross-linked 50-60 nm PIC micelles purified from production impurities and determinable siRNA loading. These PIC micelles can deliver functional siRNA into Neuro2A and KB cells evaluated by cellular uptake and specific gene knockdown assays.


Assuntos
Micelas , Polímeros , Dissulfetos/química , Humanos , Íons , Polímeros/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
19.
Nucl Med Biol ; 104-105: 11-21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34839209

RESUMO

INTRODUCTION: Radiotherapy of cancer requires both alpha- and beta-particle emitting radionuclides, as these radionuclide types are efficient at destroying different types of tumors. Both classes of radionuclides require a vehicle, such as an antibody or a polymer, to be delivered and retained within the tumor. Polyglutamic acid (pGlu) is a polymer that has proven itself effective as a basis of drug-polymer conjugates in the clinic, while its derivatives have been used for pretargeted tumor imaging in a research setup. trans-Cyclooctene (TCO) modified pGlu is suitable for pretargeted imaging or therapy, as well as for intratumoral radionuclide therapy. In all cases, it becomes indirectly radiolabeled via the bioorthogonal click reaction with the tetrazine (Tz) molecule carrying the radionuclide. In this study, we report the radiolabeling of TCO-modified pGlu with either lutetium-177 (177Lu), a beta-particle emitter, or actinium-225 (225Ac), an alpha-particle emitter, using the click reaction between TCO and Tz. METHODS: A panel of Tz derivatives containing a metal ion binding chelator (DOTA or macropa) connected to the Tz moiety directly or through a polyethylene glycol (PEG) linker was synthesized and tested for their ability to chelate 177Lu and 225Ac, and click to pGlu-TCO. Radiolabeled 177Lu-pGlu and 225Ac-pGlu were isolated by size exclusion chromatography. The retention of 177Lu or 225Ac by the obtained conjugates was investigated in vitro in human serum. RESULTS: All DOTA-modified Tzs efficiently chelated 177Lu resulting in average radiochemical conversions (RCC) of >75%. Isolated radiochemical yields (RCY) for 177Lu-pGlu prepared from 177Lu-Tzs ranged from 31% to 55%. TLC analyses detected <5% unchelated 177Lu for all 177Lu-pGlu preparations over six days in human serum. For 225Ac chelation, optimized RCCs ranged from 61 ± 34% to quantitative for DOTA-Tzs and were quantitative for the macropa-modified Tz (>98%). Isolated radiochemical yields (RCY) for 225Ac-pGlu prepared from 225Ac-Tzs ranged from 28% to 51%. For 3 out of 5 225Ac-pGlu conjugates prepared from DOTA-Tzs, the amount of unchelated 225Ac stayed below 10% over six days in human serum, while 225Ac-pGlu prepared from macropa-Tz showed a steady release of up to 37% 225Ac. CONCLUSION: We labeled TCO-modified pGlu polymers with alpha- and beta-emitting radionuclides in acceptable RCYs. All 177Lu-pGlu preparations and some 225Ac-pGlu preparations showed excellent stability in human plasma. Our work shows the potential of pGlu as a vehicle for alpha- and beta-radiotherapy of tumors and demonstrated the usefulness of Tz ligation for indirect radiolabeling.


Assuntos
Lutécio , Polímeros , Animais , Linhagem Celular Tumoral , Humanos , Lutécio/química , Lutécio/uso terapêutico , Camundongos , Camundongos Nus , Peptídeos , Radioquímica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico
20.
Macromol Rapid Commun ; 43(12): e2100655, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34888977

RESUMO

Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click-reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine - trans-cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO-functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO-containing graft copolymers, namely PeptoBrushes (polyglutamic acid-graft-polysarcosine), novel [11 C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11 C]tetrazine production is easy and scalable, while indirect TCO-PeptoBrushes labeling with these [11 C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11 C-labeling of diverse TCO-functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET.


Assuntos
Ciclo-Octanos , Tomografia por Emissão de Pósitrons , Radioisótopos de Carbono , Química Click/métodos , Reação de Cicloadição , Ciclo-Octanos/química , Tomografia por Emissão de Pósitrons/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...