Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 30(12): 4042-4055, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27613804

RESUMO

The polycomb complex proto-oncogene BMI1 [B lymphoma Mo-MLV insertion region 1 homolog (mouse)] is essential for self-renewal of normal and cancer stem cells. BMI1-null mice show severe defects in growth, development, and survival. Although BMI1 is known to exert its effect in the nucleus via repression of 2 potent cell-cycle regulators that are encoded by the Ink4a/Arf locus, deletion of this locus only partially rescues BMI1-null phenotypes, which is indicative of alternate mechanisms of action of BMI1. Here, we show that an extranuclear pool of BMI1 localizes to inner mitochondrial membrane and directly regulates mitochondrial RNA (mtRNA) homeostasis and bioenergetics. These mitochondrial functions of BMI1 are independent of its previously described nuclear functions because a nuclear localization-defective mutant BMI1 rescued several bioenergetic defects that we observed in BMI1-depleted cells, for example, mitochondrial respiration, cytochrome c oxidase activity, and ATP production. Mechanistically, BMI1 coprecipitated with polynucleotide phosphorylase, a ribonuclease that is responsible for decay of mtRNA transcripts. Loss of BMI1 enhanced ribonuclease activity of polynucleotide phosphorylase and reduced mtRNA stability. These findings not only establish a novel extranuclear role of BMI1 in the regulation of mitochondrial bioenergetics, but also provide new mechanistic insights into the role of this proto-oncogene in stem cell differentiation, neuronal aging, and cancer.-Banerjee Mustafi, S., Aznar, N., Dwivedi, S. K. D., Chakraborty, P. K., Basak, R., Mukherjee, P., Ghosh, P., Bhattacharya, R. Mitochondrial BMI1 maintains bioenergetic homeostasis in cells.


Assuntos
Diferenciação Celular/fisiologia , Homeostase/fisiologia , Mitocôndrias/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/genética , Proto-Oncogene Mas
2.
Biochim Biophys Acta ; 1859(8): 983-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27295567

RESUMO

Chemotherapy-induced emergence of drug resistant cells is frequently observed and is exemplified by the expression of family of drug resistance proteins including, multidrug resistance protein 1 (MDR1). However, a concise mechanism for chemotherapy-induced MDR1 expression is unclear. Mechanistically, mutational selection, epigenetic alteration, activation of the Wnt pathway or impaired p53 function have been implicated. The present study describes that the surviving fraction of cisplatin resistant cells co- upregulate MDR1, BMI1 and acetyl transferase activity of TIP60. Using complementary gain and loss of function approaches, we demonstrate that the expression of MDR1 is positively regulated by BMI1, a stem-cell factor classically known as a transcriptional repressor. Our study establishes a functional interaction between TIP60 and BMI-1 resulting in upregulation of MDR1 expression. Chromatin immunoprecipitation (ChIP) assays further establish that the proximal MDR1 promoter responds to cisplatin in a BMI1 dependent manner. BMI1 interacts with a cluster of E-box elements on the MDR1 promoter and recruits TIP60 resulting in acetylation of histone H2A and H3. Collectively, our data establish a hitherto unknown liaison among MDR1, BMI1 and TIP60 and provide mechanistic insights into cisplatin-induced MDR1 expression resulting in acquired cross-resistance against paclitaxel, doxorubicin and likely other drugs. In conclusion, our results advocate utilizing anti-BMI1 strategies to alleviate acquired resistance to chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/genética , Complexo Repressor Polycomb 1/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/agonistas , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5 , Paclitaxel/farmacologia , Complexo Repressor Polycomb 1/agonistas , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...