Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934118

RESUMO

CO2 is a major component of the icy mantles surrounding dust grains in planet and star formation regions. Understanding its photodesorption is crucial for explaining gas phase abundances in the coldest environments of the interstellar medium irradiated by vacuum-UV (VUV) photons. Photodesorption yields determined experimentally from CO2 samples grown at low temperatures (T = 15 K) have been found to be very sensitive to experimental methods and conditions. Several mechanisms have been suggested for explaining the desorption of CO2, O2 and CO from CO2 ices. In the present study, the cross-sections characterizing the dynamics of photodesorption as a function of photon fluence (determined from released molecules in the gas phase) and of ice composition modification (determined in situ in the solid phase) are compared for the first time for different photon flux conditions (from 7.3 × 1012 photon per s cm-2 to 2.2× 1014 photon per s cm-2) using monochromatic synchrotron radiation in the VUV range (on the DESIRS beamline at SOLEIL). This approach reveals that CO and O2 desorptions are decorrelated from that of CO2. CO and O2 photodesorption yields depend on photon flux conditions and can be linked to surface chemistry. In contrast, the photodesorption yield of CO2 is independent of the photon flux conditions and can be linked to bulk ice chemical modification, consistently with indirect desorption induced by an electronic transition (DIET) process.

2.
Phys Rev Lett ; 131(23): 238001, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134796

RESUMO

Although UV photon-induced CO ice desorption is clearly observed in many cold regions of the Universe as well as in the laboratory, the fundamental question of the mechanisms involved at the molecular scale remains debated. In particular, the exact nature of the involved energy transfers in the indirect desorption pathway highlighted in previous experiments is not explained. Using ab initio molecular dynamics simulations, we explore a new indirect desorption mechanism in which a highly vibrationally excited CO (v=40) within an aggregate of 50 CO molecules triggers the desorption of molecules at the surface. The desorption originates first from a mutual attraction between the excited molecule and the surrounding molecule(s), followed by a cascade of energy transfers, ultimately resulting in the desorption of vibrationally cold CO (∼95% in v=0). The theoretical vibrational distribution, along with the kinetic energy one, which peaks around 25 meV for CO with low rotational levels (v=0, J<7), is in excellent agreement with the results obtained from VUV laser induced desorption (157 nm) of CO (v=0, 1) probed using REMPI.

3.
Faraday Discuss ; 245(0): 488-507, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37309601

RESUMO

Being a potential process that could explain gas phase abundances of so-called complex organic molecules (COMs) in the cold interstellar medium (ISM), the UV photon-induced desorption from organics-containing molecular ices has been experimentally studied. In this work, we focused on the observation of the photodesorbed products and the measurement of the associated photodesorption yields from pure and mixed molecular ices, each containing organic molecules whose detection has been achieved in the gas phase of the cold ISM, namely formic acid HCOOH and methyl formate HCOOCH3. Each molecule, in pure ice or in ice mixed with CO or water, was irradiated at 15 K with monochromatic vacuum UV photons in the 7-14 eV range using synchrotron radiation from the SOLEIL synchrotron facility, DESIRS beamline. Photodesorption yields of the intact molecules and of the photoproducts were derived as a function of the incident photon energy. Experiments have revealed that the desorbing species match the photodissociation pattern of each isolated molecule, with little influence of the kind of ice (pure or mixed in CO or H2O-rich environment). For both species, the photodesorption of the intact organics is found to be negligible in our experimental conditions, resulting in yields typically below 10-5 ejected molecules per incident photon. The results obtained on HCOOH and HCOOCH3-containing ices are similar to what has already been found for methanol-containing ices, but contrast with the case of another complex molecule, CH3CN, photodesorption of which has been recently studied. Such experimental results may be linked to the observation of COMs in protoplanetary disks, in which CH3CN is commonly observed whereas HCOOH or methanol are detected only in some sources, HCOOCH3 not being detected at all.

4.
Chemphyschem ; 24(9): e202200912, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36705516

RESUMO

X-Ray irradiation of interstellar ice analogues has recently been proven to induce desorption of molecules, thus being a potential source for the still-unexplained presence of gaseous organics in the coldest regions of the interstellar medium, especially in protoplanetary disks. The proposed desorption mechanism involves the Auger decay of excited molecules following soft X-ray absorption, known as X-ray induced electron-stimulated desorption (XESD). Aiming to quantify electron induced desorption in XESD, we irradiated pure methanol (CH3 OH) ices at 23 K with 505 eV electrons, to simulate the Auger electrons originating from the O 1s core absorption. Desorption yields of neutral fragments and the effective methanol depletion cross-section were quantitatively determined by mass spectrometry. We derived desorption yields in molecules per incident electron for CO, CO2 , CH3 OH, CH4 /O, H2 O, H2 CO, C2 H6 and other less abundant but more complex organic products. We obtained desorption yields remarkably similar to XESD values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...