Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecohealth ; 20(1): 74-83, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37140741

RESUMO

Chytridiomycosis is affecting amphibians worldwide, causing the decline and extinction of several amphibian populations. The disease is caused by the fungus Batrachochytrium dendrobatidis (Bd), a multihost pathogen living in freshwater habitats. While several environmental factors have been associated with the prevalence of Bd and its virulence, the effects of water quality on the pathogen are not clear yet. Some evidence suggests that water pollution may reduce amphibians' immune response and increase prevalence of Bd. To explore this hypothesis, we analyzed the relationship between water quality and the presence of Bd by using spatial data mining of 150 geolocations of Bd in amphibians from 9 families where Bd positive specimens have been previously reported, and water quality in 4,202 lentic and lotic water bodies in Mexico from 2010 to 2021. Our model showed that in the 3 main families where Bd was recorded, its presence is high in locations with low water quality, i.e., water polluted likely contaminated with urban and industrial waste. Using this model, we inferred areas suitable for Bd in Mexico; mainly in poorly studied areas along the gulf and on the pacific slope. We further argue that actions to reduce water pollution should become an integral part of public policies to prevent the spread of Bd and protect amphibians from this deadly pathogen.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , México/epidemiologia , Ecossistema , Batrachochytrium , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Anfíbios/microbiologia , Poluição da Água/efeitos adversos
2.
FEMS Microbiol Ecol ; 98(12)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36288213

RESUMO

Chytridiomycosis, a lethal fungal disease caused by Batrachochytrium dendrobatidis (Bd), is responsible for population declines and extinctions of amphibians worldwide. However, not all amphibian species are equally susceptible to the disease; some species persist in Bd enzootic regions with no population reductions. Recently, it has been shown that the amphibian skin microbiome plays a crucial role in the defense against Bd. Numerous bacterial isolates with the capacity to inhibit the growth of Batrachochytrium fungi have been isolated from the skin of amphibians. Here, we characterized eight Acinetobacter bacteria isolated from the frogs Agalychnis callidryas and Craugastor fitzingeri at the genomic level. A total of five isolates belonged to Acinetobacter pittii,Acinetobacter radioresistens, or Acinetobactermodestus, and three were not identified as any of the known species, suggesting they are members of new species. We showed that seven isolates inhibited the growth of Bd and that all eight isolates inhibited the growth of the phytopathogen fungus Botrytis cinerea. Finally, we identified the biosynthetic gene clusters that could be involved in the antifungal activity of these isolates. Our results suggest that the frog skin microbiome includes Acinetobacter isolates that are new to science and have broad antifungal functions, perhaps driven by distinct genetic mechanisms.


Assuntos
Acinetobacter , Quitridiomicetos , Micoses , Animais , Antifúngicos/farmacologia , Anuros/microbiologia , Bactérias/genética , Micoses/microbiologia , Pele/microbiologia , Acinetobacter/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...