Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 98, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046491

RESUMO

Skin microbiomes in amphibians are complex systems that can be influenced by biotic and abiotic factors. In this study, we examined the effect of host species and environmental conditions on the skin bacterial and fungal microbiota of four obligate paedomorphic salamander species, commonly known as axolotls (Ambystoma andersoni, A. dumerilii, A. mexicanum, and A. taylori), all of them endemic to the Trans-Mexican Volcanic Belt. We found that despite their permanent aquatic lifestyle, these species present a host-specific skin microbiota that is distinct from aquatic communities. We identified skin-associated taxa that were unique to each host species and that differentiated axolotl species based on alpha and beta diversity metrics. Moreover, we identified a set of microbial taxa that were shared across hosts with high relative abundances across skin samples. Specifically, bacterial communities were dominated by Burkholderiales and Pseudomonadales bacterial orders and Capnodiales and Pleosporales fungal orders. Host species and environmental variables collectively explained more microbial composition variation in bacteria (R2 = 0.46) in comparison to fungi (R2 = 0.2). Our results contribute to a better understanding of the factors shaping the diversity and composition of skin microbial communities in Ambystoma. Additional studies are needed to disentangle the effects of specific host associated and environmental factors that could influence the skin microbiome of these endangered species.


Assuntos
Bactérias , Fungos , Microbiota , Pele , Animais , Pele/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , México , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Ambystoma mexicanum/microbiologia , Especificidade de Hospedeiro , Meio Ambiente , Biodiversidade
2.
Environ Microbiol ; 24(1): 494-506, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34959256

RESUMO

Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.


Assuntos
Quitridiomicetos , Animais , Anuros/microbiologia , Bactérias , Batrachochytrium , Quitridiomicetos/genética , Variação Genética , México , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...