Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391417

RESUMO

Microneedle patches are attractive drug delivery systems that give hope for treating skin disorders. In this study, to first fabricate a chitosan-based low-cost microneedle patch (MNP) using a CO2 laser cutter for in vitro purposes was tried and then the delivery and impact of Glycyrrhiza glabra extract (GgE) on the cell population by this microneedle was evaluated. Microscopic analysis, swelling, penetration, degradation, biocompatibility, and drug delivery were carried out to assess the patch's performance. DAPI staining and acridine orange (AO) staining were performed to evaluate cell numbers. Based on the results, the MNs were conical and sharp enough (diameter: 400-500 µm, height: 700-900 µm). They showed notable swelling (2 folds) during 5 min and good degradability during 30 min, which can be considered a burst release. The MNP showed no cytotoxicity against fibroblast cell line L929. It also demonstrated good potential for GgE delivery. The results from AO and DAPI staining approved the reduction in the cell population after GgE delivery. To sum up, the fabricated MNP can be a useful recommendation for lab-scale studies. In addition, a GgE-loaded MNP can be a good remedy for skin disorders in which cell proliferation needs to be controlled.

2.
Biol Proced Online ; 26(1): 4, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279129

RESUMO

Metal-organic frameworks (MOFs) are porous materials with unique characteristics that make them well-suited for drug delivery and gene therapy applications. Among the MOFs, zeolitic imidazolate framework-8 (ZIF-8) has emerged as a promising candidate for delivering exogenous DNA into cells. However, the potential of ZIF-8 as a vector for sperm-mediated gene transfer (SMGT) has not yet been thoroughly explored.This investigation aimed to explore the potential of ZIF-8 as a vector for enhancing genetic transfer and transgenesis rates by delivering exogenous DNA into sperm cells. To test this hypothesis, we employed ZIF-8 to deliver a plasmid expressing green fluorescent protein (GFP) into mouse sperm cells and evaluated the efficiency of DNA uptake. Our findings demonstrate that ZIF-8 can efficiently load and deliver exogenous DNA into mouse sperm cells, increasing GFP expression in vitro. These results suggest that ZIF-8 is a valuable tool for enhancing genetic transfer in SMGT, with important implications for developing genetically modified animals for research and commercial purposes. Additionally, our study highlights the potential of ZIF-8 as a novel class of vectors for gene delivery in reproductive biology.Overall, our study provides a foundation for further research into using ZIF-8 and other MOFs as gene delivery systems in reproductive biology and underscores the potential of these materials as promising vectors for gene therapy and drug delivery.

3.
Growth Factors ; 41(2): 101-113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37343121

RESUMO

Notably the integration of additives such as growth factors, vitamins, and drugs with scaffolds promoted nerve tissue engineering. This study tried to provide a concise review of all these additives that facilitates nerve regeneration. An attempt was first made to provide information on the main principle of nerve tissue engineering, and then to shed light on the effectiveness of these additives on nerve tissue engineering. Our research has shown that growth factors accelerate cell proliferation and survival, while vitamins play an effective role in cell signalling, differentiation, and tissue growth. They can also act as hormones, antioxidants, and mediators. Drugs also have an excellent and necessary effect on this process by reducing inflammation and immune responses. This review shows that growth factors were more effective than vitamins and drugs in nerve tissue engineering. Nevertheless, vitamins were the most commonly used additive in the production of nerve tissue.


Assuntos
Tecido Nervoso , Engenharia Tecidual , Alicerces Teciduais , Vitaminas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Vitamina A , Vitamina K , Regeneração Nervosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...