Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 31(3): 763-774, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33655457

RESUMO

Carbon quantum dots (CQD) as the result of their exceptional physical and chemical properties show tremendous potential in various field of applications like cell imaging and doping of CQDs with elements like nitrogen and phosphorous increase its fluorescence property. Herein, we have synthesized fluorescent nitrogen and phosphorous codoped carbon quantum dots (NPCQDs) via a one-pot hydrothermal method. Sesame oil, L-Aspartic acid, and phosphoric acid were used as carbon, nitrogen, and phosphorous sources, respectively. UV-Vis spectrophotometer, fluorescence spectrometer, Fourier transform infrared spectrometer (FTIR), X-ray diffraction spectrometer (XRD), field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM) were employed to characterize the synthesized fluorescent NPCQDs. The as-synthesized NPCQDs with a particle size of 4.7 nm possess excellent water solubility, high fluorescence with high quantum yield (46%), high ionic stability, and resistance to photobleaching. MTT assay indicated the biocompatibility of NPCQDs and it was used for multicolor live-cell imaging. Besides, the NPCQDs show an effective probe of iron ions (Fe3+) in an aqueous solution with a high degree of sensitivity and selectivity. The DPPH assay showed its good antioxidant activity.


Assuntos
Carbono/química , Cobalto/química , Ferro/análise , Imagem Molecular/métodos , Nitrogênio/química , Fósforo/química , Pontos Quânticos/química , Antioxidantes/química , Antioxidantes/farmacologia , Sobrevivência Celular , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química
2.
Sci Rep ; 10(1): 14080, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826928

RESUMO

During past decade, the ternary nanocomposite is ubiquitous in nanotechnology. Herein, a simple fabrication of cuprous oxide (Cu2O) and silver (Ag) nanoparticles into Tetraaniline (TANI) matrix by in situ-polymerization approach to attain Tetramer-Metal Oxide-Metal (TANI/Cu2O/Ag, shortly TCA) ternary composite was reported firstly. The synthesized materials were further characterized by a series of instrumental techniques to understand its structure, morphology and thermal properties. This nanocomposite showed promising applications in wastewater treatment by the testing of photocatalytic activity over the pararosaniline hydrochloride (PRA) dye degradation under visible light radiations, removal of Cadmium ion (Cd2+) by adsorption, corrosion resistance and antibacterial activity against both gram positive and gram negative bacterial strains. The obtained results of TCA compared with the pure TANI and binary nanocomposite (TANI/Cu2O) declared that the TCA composite is excellent material to solve the environmental issues due to lesser bandgap energy, visible light respond, high absorptivity, and long-life excitation.

4.
RSC Adv ; 10(37): 22043-22053, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35516604

RESUMO

Nanocomposites of tetraaniline (TAN) nanostructures/silver nanoparticles (Ag NPs) were synthesized by an interfacial polymerization method using N-phenyl-1, 4-phenylenediamine (NPPD), AgNO3 and ammonium persulphate (APS) as monomer, oxidizing agent in immiscible solvent toluene-water respectively. The structure and morphology of the as-prepared TAN and Ag NPs were investigated by UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermogravimetry (TG). The results of FTIR spectroscopy confirmed the formation of TAN and Ag NPs and those of XRD showed the presence of the face centred cubic (fcc) phase of Ag NPs. The FESEM and TEM images gave direct evidence that Ag NPs stabilized with the TAN nanostructures. TGA indicated the enhanced thermal stability of the nanocomposites (NCs). The catalytic activity of TAN/Ag NCs was investigated for the model reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of excess sodium borohydride.

5.
RSC Adv ; 9(67): 39264-39271, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540644

RESUMO

Herein, we have reported a facile and green synthesis approach of Ag NP decorated reduced graphene oxide (RGO) through an in situ self-assembly method in the presence of l-methionine (l-Met) as reducing and stabilizing agent. The electronic properties, crystal structure, and morphology of the as-synthesized RGO-Ag nanocomposite were investigated by UV-Visible (UV-Vis) spectroscopy, Fourier transform-infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. UV-Vis and FTIR show the effective reduction of GO and the formation of Ag NPs using l-Met. FESEM, TEM, and XRD analysis show the successful impregnation of Ag NPs into RGO with a 23 nm average crystallite size. The RGO-Ag nanocomposite with NaBH4 shows a fast-catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AMP). The enhanced catalytic activity of RGO-Ag nanocomposites can be attributed to the synergistic effect of improved adsorption capacity and the absence of agglomeration of Ag nanoparticles. Moreover, RGO-Ag showed strong antibacterial activity against B. subtilis and E. coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...