Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410803

RESUMO

As the best-fit leguminous crop for intercropping across time and space, mungbean promises to sustain soil health, carbon sequestration, and nutritional security across the globe. However, it is susceptible to waterlogging, a significant constraint that persists during heavy rains. Since the predicted climate change scenario features fewer but more intense rainy days. Hence, waterlogging tolerance in mungbean has been one of the major breeding objectives. The present experiment aimed to employ non-destructive tools to phenotype stress tolerance traits in mungbean genotypes exposed to waterlogging and estimate the association among the traits. A total of 12 mungbean genotypes were used in the present study to assess waterlogging tolerance at the seedling stage. Plant responses to stress were determined non-destructively using normalized difference vegetation index (NDVI) and chlorophyll fluorescence parameters at different time intervals. NDVI and grain yield were positively associated with control (r = 0.64) and stress (r = 0.59). Similarly, chlorophyll fluorescence (quantum yield of PS-II) also had a significant positive association with grain yield under both control (r = 0.52) and stress (r = 0.66) conditions. Hence, it is suggested that NDVI and chlorophyll fluorescence promise to serve as traits for non-destructive phenotyping waterlogging tolerance in mungbean genotypes. With the methods proposed in our study, it is possible to phenotype hundreds of plants for waterlogging tolerance efficiently.


Assuntos
Melhoramento Vegetal , Água , Genótipo , Fenótipo , Clorofila
2.
3 Biotech ; 13(12): 393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953830

RESUMO

Gangavati sona (GS) is a high-yielding, fine-grain rice variety widely grown in the Tungabhadra command area in Karnataka, India; however, it is susceptible to bacterial blight (BB). Therefore, the present study was conducted to improve the GS variety for BB resistance. Three BB-resistant genes (xa5, xa13, and Xa21) were introgressed into the genetic background of susceptible cultivar GS through marker-assisted backcrossing (MABB) by using Improved samba Mahsuri (ISM), a popular, high-yielding, bacterial blight resistant rice variety as a donor parent. Foreground selection was carried out using gene-specific markers, viz., xa5FM (xa5), xa13prom (xa13), and pTA248 (Xa21), while background selection was carried out using well-distributed 64 polymorphic microsatellite markers. The true heterozygote F1 was used as the male parent for backcrossing with GS to obtain BC1F1. The process was repeated in BC1F1 generation, and a BC2F1 plant (IGS-5-11-5) possessing all three target genes along with maximum recurrent parent genome (RPG) recovery (86.7%) was selfed to obtain BC2F2s. At BC2F2, a single triple gene homozygote plant (IGS-5-11-5-33) with 92.6% RPG recovery was identified and advanced to BC2F5 by a pedigree method. At BC2F5, the seven best entries were selected, possessing all three resistance genes with high resistance levels against bacterial blight, yield level, and grain quality features equivalent to better than GS. The improved versions of GS will immensely benefit the farmers whose fields are endemic to BB.

3.
PeerJ ; 11: e15928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719114

RESUMO

Oilseeds with high productivity and tolerance to various environmental stresses are in high demand in the food and industrial sectors. Safflower, grown under residual moisture in the semi-arid tropics, is adapted to moisture stress at certain levels. However, a substantial reduction in soil moisture has a significant impact on its productivity. Therefore, assessing genetic variation for water use efficiency traits like transpiration efficiency (TE), water uptake, and canopy temperature depression (CTD) is essential for enhancing crop adaptation to drought. The response of safflower genotypes (n = 12) to progressive soil moisture depletion was studied in terms of water uptake, TE, and CTD under a series of pot and field experiments. The normalised transpiration rate (NTR) in relation to the fraction of transpirable soil water (FTSW) varied significantly among genotypes. The genotypes A-1, Bhima, GMU-2347, and CO-1 had higher NTR-FTSW threshold values of 0.79 (R2 = 0.92), 0.74 (R2 = 0.96), 0.71 (R2 = 0.96), and 0.71 (R2 = 0.91), respectively, whereas GMU-2644 had the lowest 0.38 (R2 = 0.93). TE was high in genotype GMU-2347, indicating that it could produce maximum biomass per unit of water transpired. At both the vegetative and reproductive stages, significant positive relationships between TE, SPAD chlorophyll metre reading (SCMR) (p < 0.01) and CTD (p < 0.01) were observed under field conditions by linear regression. The genotypes with high FTSW-NTR thresholds, high SCMR, and low CTD may be useful clues in identifying a genotype's ability to adapt to moisture stress. The findings showed that the safflower genotypes A-1, Bhima, GMU-2347, and CO-1 exhibited an early decline and regulated water uptake by conserving it for later growth stages under progressive soil water depletion.


Assuntos
Carthamus tinctorius , Temperatura , Temperatura Baixa , Transporte Biológico , Clorofila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...