Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35993476

RESUMO

BACKGROUND: PIM (Proviral Integration site for Moloney Murine Leukemia virus) kinases are members of the class of kinase family serine/ threonine kinases, which play a crucial role in cancer development. As there is no drug in the market against PIM-1, kinase has transpired as a budding and captivating target for discovering new anticancer agents targeting PIM-1 kinase. AIM: The current research pondered the development of new PIM-1 kinase inhibitors by applying a ligand-based and structure-based drug discovery approach involving 3D QSAR, molecular docking, and dynamics simulation. METHOD: In this study, association allying the structural properties and biological activity was undertaken using 3D-QSAR analysis. The 3D-QSAR model was generated with the help of 35 compounds from which the best model manifested an appreciated cross-validation coefficient (q2) of 0.8866 and conventional correlation coefficient (r2) of 0.9298, respectively and predicted correlation coefficient (r2 pred) was obtained as 0.7878. RESULT: The molecular docking analysis demonstrated that the analogs under analysis occupied the active site of PIM-1 kinase receptor and interactions with Lys67 in the catalytic region, Asp186 in the DFG motif, and Glu171 were noticed with numerous compounds. DISCUSSION: Furthermore, the molecular dynamics simulation study stated that the ligand portrayed the strong conformational stability within the active site of PIM-1 kinase protein, forming of two hydrogen bonds until 100 ns, respectively. CONCLUSION: Overall outcomes of the study revealed that applications of the ligand-based drug discovery approach and structure-based drug discovery strategy conceivably applied to discovering new PIM-1 kinase inhibitors as anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...