Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798460

RESUMO

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328157

RESUMO

Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.

3.
J Pain ; 25(1): 53-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37482234

RESUMO

Most reports agree that aging negatively impacts pain processing and that the prevalence of chronic pain increases significantly with age. To improve current therapies, it is critical that aged animals be included in preclinical studies. Here we compared sensitivities to pain and itch-provoking stimuli in naïve and injured young and aged mice. Surprisingly, we found that in the absence of injury, aged male and female mice are significantly less responsive to mechanical stimuli and, in females, also to noxious thermal (heat) stimuli. In both older male and female mice, compared to younger (6-month-old mice), we also recorded reduced pruritogen-evoked scratching. On the other hand, after nerve injury, aged mice nevertheless developed significant mechanical hypersensitivity. Interestingly, however, and in contrast to young mice, aged mice developed both ipsilateral and contralateral postinjury mechanical allodynia. In a parallel immunohistochemical analysis of microglial and astrocyte markers, we found that the ipsilateral to the contralateral ratio of nerve injury-induced expression decreased with age. That observation is consistent with our finding of contralateral hypersensitivity after nerve injury in the aged but not the young mice. We conclude that aging has opposite effects on baseline versus postinjury pain and itch processing. PERSPECTIVE: Aged male and female mice (22-24 months) are less sensitive to mechanical, thermal (heat), and itch-provoking stimuli than are younger mice (6 months).


Assuntos
Dor , Prurido , Masculino , Feminino , Camundongos , Animais , Hiperalgesia/etiologia
4.
Nat Commun ; 14(1): 8067, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057319

RESUMO

The lipid prostaglandin E2 (PGE2) mediates inflammatory pain by activating G protein-coupled receptors, including the prostaglandin E2 receptor 4 (EP4R). Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce nociception by inhibiting prostaglandin synthesis, however, the disruption of upstream prostanoid biosynthesis can lead to pleiotropic effects including gastrointestinal bleeding and cardiac complications. In contrast, by acting downstream, EP4R antagonists may act specifically as anti-inflammatory agents and, to date, no selective EP4R antagonists have been approved for human use. In this work, seeking to diversify EP4R antagonist scaffolds, we computationally dock over 400 million compounds against an EP4R crystal structure and experimentally validate 71 highly ranked, de novo synthesized molecules. Further, we show how structure-based optimization of initial docking hits identifies a potent and selective antagonist with 16 nanomolar potency. Finally, we demonstrate favorable pharmacokinetics for the discovered compound as well as anti-allodynic and anti-inflammatory activity in several preclinical pain models in mice.


Assuntos
Dinoprostona , Receptores de Prostaglandina , Humanos , Camundongos , Animais , Fagocitose , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dor/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia
5.
Neurosci Biobehav Rev ; 154: 105421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802267

RESUMO

Functional magnetic resonance imaging (fMRI) is increasingly used to non-invasively study the acute impact of psychedelics on the human brain. While fMRI is a promising tool for measuring brain function in response to psychedelics, it also has known methodological challenges. We conducted a systematic review of fMRI studies examining acute responses to experimentally administered psychedelics in order to identify convergent findings and characterize heterogeneity in the literature. We reviewed 91 full-text papers; these studies were notable for substantial heterogeneity in design, task, dosage, drug timing, and statistical approach. Data recycling was common, with 51 unique samples across 91 studies. Fifty-seven studies (54%) did not meet contemporary standards for Type I error correction or control of motion artifact. Psilocybin and LSD were consistently reported to moderate the connectivity architecture of the sensorimotor-association cortical axis. Studies also consistently reported that ketamine administration increased activation in the dorsomedial prefrontal cortex. Moving forward, use of best practices such as pre-registration, standardized image processing and statistical testing, and data sharing will be important in this rapidly developing field.


Assuntos
Alucinógenos , Ketamina , N-Metil-3,4-Metilenodioxianfetamina , Humanos , Alucinógenos/farmacologia , Ketamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Psilocibina/farmacologia , Encéfalo/diagnóstico por imagem
6.
Sci Immunol ; 8(88): eabi6887, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37831760

RESUMO

Despite robust literature associating IL-31 with pruritic inflammatory skin diseases, its influence on cutaneous inflammation and the interplay between inflammatory and neurosensory pathways remain unmapped. Here, we examined the consequences of disrupting Il31 and its receptor Il31ra in a mouse model of house dust mite (HDM)-induced allergic dermatitis. Il31-deficient mice displayed a deficit in HDM dermatitis-associated scratching, consistent with its well-established role as a pruritogen. In contrast, Il31 deficiency increased the number and proportion of cutaneous type 2 cytokine-producing CD4+ T cells and serum IgE in response to HDM. Furthermore, Il4ra+ monocytes and macrophages capable of fueling a feedforward type 2 inflammatory loop were selectively enriched in Il31ra-deficient HDM dermatitis skin. Thus, IL-31 is not strictly a proinflammatory cytokine but rather an immunoregulatory factor that limits the magnitude of type 2 inflammatory responses in skin. Our data support a model wherein IL-31 activation of IL31RA+ pruritoceptors triggers release of calcitonin gene-related protein (CGRP), which can mediate neurogenic inflammation, inhibit CD4+ T cell proliferation, and reduce T cell production of the type 2 cytokine IL-13. Together, these results illustrate a previously unrecognized neuroimmune pathway that constrains type 2 tissue inflammation in the setting of chronic cutaneous allergen exposure and may explain paradoxical dermatitis flares in atopic patients treated with anti-IL31RA therapy.


Assuntos
Dermatite Atópica , Inflamação Neurogênica , Animais , Camundongos , Citocinas , Imunidade , Pyroglyphidae , Pele/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo
7.
Pain ; 164(11S): S11-S15, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37831954

RESUMO

ABSTRACT: This article highlights advances in basic science preclinical pain research, clinical research, and psychological research occurring over the 50 years since the International Association for the Study of Pain was founded. It presents important findings and key trends in these 3 areas of pain science: basic science preclinical research, clinical research, and psychological research.


Assuntos
Dor , Pesquisa , Humanos
8.
Pain ; 164(11S): S27-S30, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37831957

RESUMO

ABSTRACT: The International Association for the Study of Pain (IASP) has a 50-year history of publishing educational and research materials, ranging from traditional print format books, journals, and other informational formats to online and electronic formats. Here we provide a historical overview of IASP publications and reflections from the perspective of 5 former or current Editors-in-Chief.


Assuntos
Editoração , Escolaridade
9.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292913

RESUMO

Advances in optical imaging approaches and fluorescent biosensors have enabled an understanding of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and the persistence of post-laminectomy fibrosis have greatly limited similar advances in the spinal cord. To overcome these technical obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis; a redesigned, cost-effective implantable spinal imaging chamber; and improved motion correction methods that together permit imaging of the spinal cord in awake, behaving mice, for months to over a year. We also demonstrate a robust ability to monitor axons, identify a spinal cord somatotopic map, conduct Ca2+ imaging of neural dynamics in behaving animals responding to pain-provoking stimuli, and observe persistent microglial changes after nerve injury. The ability to couple neural activity and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain.

10.
Cell ; 186(10): 2160-2175.e17, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37137306

RESUMO

The serotonin transporter (SERT) removes synaptic serotonin and is the target of anti-depressant drugs. SERT adopts three conformations: outward-open, occluded, and inward-open. All known inhibitors target the outward-open state except ibogaine, which has unusual anti-depressant and substance-withdrawal effects, and stabilizes the inward-open conformation. Unfortunately, ibogaine's promiscuity and cardiotoxicity limit the understanding of inward-open state ligands. We docked over 200 million small molecules against the inward-open state of the SERT. Thirty-six top-ranking compounds were synthesized, and thirteen inhibited; further structure-based optimization led to the selection of two potent (low nanomolar) inhibitors. These stabilized an outward-closed state of the SERT with little activity against common off-targets. A cryo-EM structure of one of these bound to the SERT confirmed the predicted geometry. In mouse behavioral assays, both compounds had anxiolytic- and anti-depressant-like activity, with potencies up to 200-fold better than fluoxetine (Prozac), and one substantially reversed morphine withdrawal effects.


Assuntos
Ibogaína , Inibidores Seletivos de Recaptação de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Bibliotecas de Moléculas Pequenas , Animais , Camundongos , Fluoxetina/farmacologia , Ibogaína/química , Ibogaína/farmacologia , Conformação Molecular , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/ultraestrutura , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
11.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066151

RESUMO

The general consensus is that increases in neuronal activity in the anterior cingulate cortex (ACC) contribute to pain's negative affect. Here, using in vivo imaging of neuronal calcium dynamics in mice, we report that nitrous oxide, a general anesthetic that reduces pain affect, paradoxically, increases ACC spontaneous activity. As expected, a noxious stimulus also increased ACC activity. However, as nitrous oxide increases baseline activity, the relative change in activity from pre-stimulus baseline was significantly less than the change in the absence of the general anesthetic. We suggest that this relative change in activity represents a neural signature of the affective pain experience. Furthermore, this signature of pain persists under general anesthesia induced by isoflurane, at concentrations in which the mouse is unresponsive. We suggest that this signature underlies the phenomenon of connected consciousness, in which use of the isolated forelimb technique revealed that pain percepts can persist in anesthetized patients.

12.
Pain ; 164(1): e10-e24, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35560117

RESUMO

ABSTRACT: Neuroimaging is a powerful tool to investigate potential associations between chronic pain and brain structure. However, the proliferation of studies across diverse chronic pain syndromes and heterogeneous results challenges data integration and interpretation. We conducted a preregistered anatomical likelihood estimate meta-analysis on structural magnetic imaging studies comparing patients with chronic pain and healthy controls. Specifically, we investigated a broad range of measures of brain structure as well as specific alterations in gray matter and cortical thickness. A total of 7849 abstracts of experiments published between January 1, 1990, and April 26, 2021, were identified from 8 databases and evaluated by 2 independent reviewers. Overall, 103 experiments with a total of 5075 participants met the preregistered inclusion criteria. After correction for multiple comparisons using the gold-standard family-wise error correction ( P < 0.05), no significant differences associated with chronic pain were found. However, exploratory analyses using threshold-free cluster enhancement revealed several spatially distributed clusters showing structural alterations in chronic pain. Most of the clusters coincided with regions implicated in nociceptive processing including the amygdala, thalamus, hippocampus, insula, anterior cingulate cortex, and inferior frontal gyrus. Taken together, these results suggest that chronic pain is associated with subtle, spatially distributed alterations of brain structure.


Assuntos
Dor Crônica , Humanos , Dor Crônica/diagnóstico por imagem , Funções Verossimilhança , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem
13.
Pain ; 164(1): 43-58, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442931

RESUMO

ABSTRACT: Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here, we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. Ninety-seven percent of these patients carry an R206H gain-of-function point mutation in the BMP type I receptor ACVR1 (ACVR1 R206H ), which causes neofunction to Activin A and constitutively activates signaling through phosphorylated SMAD1/5/8. Although patients with FOP can harbor pathological lesions in the peripheral and central nervous system, their etiology and clinical impact are unclear. Quantitative sensory testing of patients with FOP revealed significant heat and mechanical pain hypersensitivity. Although there was no major effect of ACVR1 R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells, both intracellular and extracellular electrophysiology analyses of the ACVR1 R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1 R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.


Assuntos
Miosite Ossificante , Neuralgia , Ossificação Heterotópica , Humanos , Mutação com Ganho de Função , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Células Receptoras Sensoriais/metabolismo , Neuralgia/genética , Mutação/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo
14.
Science ; 377(6614): eabn7065, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173843

RESUMO

Because nonopioid analgesics are much sought after, we computationally docked more than 301 million virtual molecules against a validated pain target, the α2A-adrenergic receptor (α2AAR), seeking new α2AAR agonists chemotypes that lack the sedation conferred by known α2AAR drugs, such as dexmedetomidine. We identified 17 ligands with potencies as low as 12 nanomolar, many with partial agonism and preferential Gi and Go signaling. Experimental structures of α2AAR complexed with two of these agonists confirmed the docking predictions and templated further optimization. Several compounds, including the initial docking hit '9087 [mean effective concentration (EC50) of 52 nanomolar] and two analogs, '7075 and PS75 (EC50 4.1 and 4.8 nanomolar), exerted on-target analgesic activity in multiple in vivo pain models without sedation. These newly discovered agonists are interesting as therapeutic leads that lack the liabilities of opioids and the sedation of dexmedetomidine.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Analgésicos não Narcóticos , Descoberta de Drogas , Manejo da Dor , Dor , Agonistas de Receptores Adrenérgicos alfa 2/química , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Analgésicos não Narcóticos/uso terapêutico , Animais , Dexmedetomidina/química , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade
15.
Elife ; 112022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35968676

RESUMO

TRPV1, a capsaicin- and heat-activated ion channel, is expressed by peripheral nociceptors and has been implicated in various inflammatory and neuropathic pain conditions. Although pharmacological modulation of TRPV1 has attracted therapeutic interest, many TRPV1 agonists and antagonists produce thermomodulatory side effects in animal models and human clinical trials, limiting their utility. These on-target effects may result from the perturbation of TRPV1 receptors on nociceptors, which transduce signals to central thermoregulatory circuits and release proinflammatory factors from their peripheral terminals, most notably the potent vasodilative neuropeptide, calcitonin gene-related peptide (CGRP). Alternatively, these body temperature effects may originate from the modulation of TRPV1 on vascular smooth muscle cells (vSMCs), where channel activation promotes arteriole constriction. Here, we ask which of these pathways is most responsible for the body temperature perturbations elicited by TRPV1 drugs in vivo. We address this question by selectively eliminating TRPV1 expression in sensory neurons or vSMCs and show that only the former abrogates agonist-induced hypothermia and antagonist-induced hyperthermia. Furthermore, lesioning the central projections of TRPV1-positive sensory nerve fibers also abrogates drug-mediated thermomodulation, whereas eliminating CGRP has no effect. Thus, TRPV1 drugs alter core body temperature by modulating sensory input to the central nervous system, rather than through peripheral actions on the vasculature. These findings suggest how mechanistically distinct TRPV1 antagonists may diminish inflammatory pain without affecting core body temperature.


Assuntos
Temperatura Corporal , Neuralgia , Animais , Peptídeo Relacionado com Gene de Calcitonina , Capsaicina/farmacologia , Humanos , Células Receptoras Sensoriais , Canais de Cátion TRPV
16.
Front Pain Res (Lausanne) ; 3: 910954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756909

RESUMO

Traditional medical neuroanatomy/neurobiology textbooks teach that pain is generated by several ascending pathways that course in the anterolateral quadrant of the spinal cord, including the spinothalamic, spinoreticular and spinoparabrachial tracts. The textbooks also teach, building upon the mid-19th century report of Brown-Séquard, that unilateral cordotomy, namely section of the anterolateral quadrant, leads to contralateral loss of pain (and temperature). In many respects, however, this simple relationship has not held up. Most importantly, pain almost always returns after cordotomy, indicating that activation of these so-called "pain" pathways may be sufficient to generate pain, but they are not necessary. Indeed, Brown-Séquard, based on his own studies, eventually came to the same conclusion. But his new view of "pain" pathways was largely ignored, and certainly did not forestall Spiller and Martin's 1912 introduction of cordotomy to treat patients. This manuscript reviews the history of "pain" pathways that followed from the first description of the Brown-Séquard Syndrome and concludes with a discussion of multisynaptic spinal cord ascending circuits. The latter, in addition to the traditional oligosynaptic "pain" pathways, may be critical to the transmission of "pain" messages, not only in the intact spinal cord but also particularly after injury.

17.
J Med Chem ; 65(5): 4201-4217, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35195401

RESUMO

The 5-HT5A receptor (5-HT5AR), for which no selective agonists and a few antagonists exist, remains the least understood serotonin receptor. A single commercial antagonist, SB-699551, has been widely used to investigate the 5-HT5AR function in neurological disorders, including pain, but this molecule has substantial liabilities as a chemical probe. Accordingly, we sought to develop an internally controlled probe set. Docking over 6 million molecules against a 5-HT5AR homology model identified 5 mid-µM ligands, one of which was optimized to UCSF678, a 42 nM arrestin-biased partial agonist at the 5-HT5AR with a more restricted off-target profile and decreased assay liabilities versus SB-699551. Site-directed mutagenesis supported the docked pose of UCSF678. Surprisingly, analogs of UCSF678 that lost the 5-HT5AR activity revealed that 5-HT5AR engagement is nonessential for alleviating pain, contrary to studies with less-selective ligands. UCSF678 and analogs constitute a selective probe set with which to study the function of the 5-HT5AR.


Assuntos
Antagonistas da Serotonina , Serotonina , Humanos , Ligantes , Dor , Receptores de Serotonina , Antagonistas da Serotonina/farmacologia
18.
Nature ; 600(7890): 759-764, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34880501

RESUMO

The σ2 receptor has attracted intense interest in cancer imaging1, psychiatric disease2, neuropathic pain3-5 and other areas of biology6,7. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone2 and the tool compound PB288. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 µM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ1 receptor. Crystal structures of two ligands bound to the σ2 receptor confirmed the docked poses. To investigate the contribution of the σ2 receptor in pain, two potent σ2-selective ligands and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model9, suggesting that the σ2 receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.


Assuntos
Neuralgia , Receptores sigma , Animais , Ligantes , Camundongos , Neuralgia/tratamento farmacológico , Receptores sigma/metabolismo , Relação Estrutura-Atividade
19.
Elife ; 102021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652270

RESUMO

Peripheral nerve injury-induced neuropathic pain is a chronic and debilitating condition characterized by mechanical hypersensitivity. We previously identified microglial activation via release of colony-stimulating factor 1 (CSF1) from injured sensory neurons as a mechanism contributing to nerve injury-induced pain. Here, we show that intrathecal administration of CSF1, even in the absence of injury, is sufficient to induce pain behavior, but only in male mice. Transcriptional profiling and morphologic analyses after intrathecal CSF1 showed robust immune activation in male but not female microglia. CSF1 also induced marked expansion of lymphocytes within the spinal cord meninges, with preferential expansion of regulatory T-cells (Tregs) in female mice. Consistent with the hypothesis that Tregs actively suppress microglial activation in females, Treg deficient (Foxp3DTR) female mice showed increased CSF1-induced microglial activation and pain hypersensitivity equivalent to males. We conclude that sexual dimorphism in the contribution of microglia to pain results from Treg-mediated suppression of microglial activation and pain hypersensitivity in female mice.


Assuntos
Fator Estimulador de Colônias de Macrófagos/genética , Microglia/metabolismo , Neuralgia/genética , Linfócitos T Reguladores/fisiologia , Animais , Feminino , Injeções Espinhais , Fator Estimulador de Colônias de Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Fatores Sexuais
20.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34234018

RESUMO

A remarkable molecular and functional heterogeneity of the primary sensory neurons and dorsal horn interneurons transmits pain- and or itch-relevant information, but the molecular signature of the projection neurons that convey the messages to the brain is unclear. Here, using retro-TRAP (translating ribosome affinity purification) and RNA sequencing, we reveal extensive molecular diversity of spino- and trigeminoparabrachial projection neurons. Among the many genes identified, we highlight distinct subsets of Cck+ -, Nptx2+ -, Nmb+ -, and Crh+ -expressing projection neurons. By combining in situ hybridization of retrogradely labeled neurons with Fos-based assays, we also demonstrate significant functional heterogeneity, including both convergence and segregation of pain- and itch-provoking inputs into molecularly diverse subsets of NK1R- and non-NK1R-expressing projection neurons.


Assuntos
Neurônios/patologia , Dor/complicações , Dor/patologia , Prurido/complicações , Prurido/patologia , Medula Espinal/patologia , Nervo Trigêmeo/patologia , Animais , Cloroquina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/genética , Estimulação Física , Prurido/genética , RNA/isolamento & purificação , RNA/metabolismo , Receptores da Neurocinina-1/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...