Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 167: 112451, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087200

RESUMO

Fresh-cut produces are often consumed uncooked, thus proper sanitation is essential for preventing cross contamination. The reduction and subsequent growth of Salmonella enterica sv Thompson were studied in pre-cut iceberg lettuce washed with simulated wash water (SWW), sodium hypochlorite (SH, free chlorine 25 mg/L), and peroxyacetic acid (PAA, 80 mg/L) and stored for 9 days under modified atmosphere at 9, 13, and 18 °C. Differences in reduction between SH and PAA were non-existent. Overall, visual quality, dehydration, leaf edge and superficial browning and aroma during storage at 9 °C were similar among treatments, but negative effects increased with temperature. These results demonstrated that PAA can be used as an effective alternative to chlorine for the disinfection of Salmonella spp. in fresh-cut lettuce. The growth of Salmonella enterica sv Thompson was successfully described with the Baranyi and Roberts growth model in the studied storage temperature range, and after treatment with SWW, chlorine, and PAA. Subsequently, predictive secondary models were used to describe the relationship between growth rates and temperature based on the models' family described by Belehrádek. Interestingly, the exposure to disinfectants biased growth kinetics of Salmonella during storage. Below 12 °C, growth rates in lettuce treated with disinfectant (0.010-0.011 log CFU/h at 9 °C) were lower than those in lettuce washed with water (0.016 log CFU/h at 9 °C); whereas at higher temperatures, the effect was the opposite. Thus, in this case, the growth rate values registered at 18 °C for lettuce treated with disinfectant were 0.048-0.054 log CFU/h compared to a value of 0.038 log CFU/h for lettuce treated with only water. The data and models developed in this study will be crucial to describing the wash-related dynamics of Salmonella in a risk assessment framework applied to fresh-cut produce, providing more complete and accurate risk estimates.


Assuntos
Desinfetantes , Ácido Peracético , Ácido Peracético/farmacologia , Lactuca , Cloro/farmacologia , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Salmonella , Desinfetantes/farmacologia , Água
2.
Foods ; 10(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34945594

RESUMO

Films formulated with polyvinyl alcohol (PVA) (synthetic biopolymer) were reinforced with lignocellulose nanofibres (LCNF) from residues of vegetable production (natural biopolymer). The LCNF were obtained by mechanical and chemical pre-treatment by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and added to the polyvinyl alcohol (polymer matrix) with the aim of improving the properties of the film for use in food packaging. The mechanical properties, crystallinity, thermal resistance, chemical structure, antioxidant activity, water barrier properties and optical properties (transparency and UV barrier), were evaluated. In general, with the addition of LCNF, an improvement in the studied properties of the films was observed. In terms of mechanical properties, the films reinforced with 7% LCNF TEMPO showed the best results for tensile strength, Young's modulus and elongation at break. At the same LCNF proportion, the thermal stability (Tmax) increased between 5.5% and 10.8%, and the antioxidant activity increased between 90.9% and 191.8%, depending on the raw material and the pre-treatment used to obtain the different LCNF. Finally, a large increase in UV blocking was also observed with the addition of 7% LCNF. In particular, the films with 7% of eggplant LCNF showed higher performance for Young's modulus, elongation at break, thermal stability and UV barrier. Overall, results demonstrated that the use of LCNF generated from agricultural residues represents a suitable bioeconomy approach able to enhance film properties for its application in the development of more sustainable and eco-friendly food packaging systems.

3.
Foods ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34359453

RESUMO

A biodegradable packaging film containing cellulose nanofibers from olive tree pruning, a by-product of olives production, was obtained using a solvent casting method. Nanocellulose was added to polyvinyl alcohol (PVA) to enhance the technological properties of the composite film as food packaging material. Nanocellulose was obtained from unbleached and bleached pulp through a mechanical and TEMPO pretreatment. Crystalline and chemical structure, surface microstructure, UV and gas barrier, optical, mechanical and antioxidant properties, as well as thermal stability were evaluated. Regarding optical properties, the UV barrier was increased from 6% for the pure PVA film to 50% and 24% for unbleached and bleached nanocellulose, respectively. The antioxidant capacity increased significantly in unbleached mechanical nanocellulose-films (5.3%) compared to pure PVA film (1.7%). In terms of mechanical properties, the tensile strength of the 5% unbleached mechanical nanocellulose films was significantly improved compared to the pure PVA film. Similarly, the 5% nanocellulose films had increased the thermal stability and improved barrier properties, reducing water vapor permeability by 38-59% and presenting an oxygen barrier comparable to aluminum layer and plastic films. Our results support the use of the developed films as a green alternative material for food packaging.

4.
Foods ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925051

RESUMO

Olea europaea L. leaves constitute a source of bioactive compounds with recognized benefits for both human health and technological purposes. In the present work, different extracts from olive leaves were obtained by the application of two extraction methods, Soxhlet and microwave-assisted extraction (MAE), and six solvents (distilled water, ethanolic and glycerol mixtures solvents). MAE was applied under 40, 60 and 80 °C for 3, 6.5 and 10 min. The effect of the extraction method, solvent and treatment factors (the latter in MAE) on the total phenol content (TPC), the antioxidant activity (AA) and the phenolic profile of the extracts were all evaluated. The extracts showed high values of TPC (up to 76.1 mg GAE/g DW) and AA (up to 78 mg TE/g DW), with oleuropein being the most predominant compound in all extracts. The Soxhlet extraction method exhibited better yields in TPC than in MAE, although both methods presented comparable AA values. The water MAE extract presented the strongest antimicrobial activity against five foodborne pathogens, with minimum inhibitory concentration (MIC) values ranging from 2.5 to 60 mg/mL. MAE water extract is proposed to be exploited in the food and nutraceutical industry in the frame of a sustainable economy.

5.
Molecules ; 25(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708406

RESUMO

Horticultural plant residues (tomato, pepper, and eggplant) were identified as new sources for lignocellulose nanofibers (LCNF). Cellulosic pulp was obtained from the different plant residues using an environmentally friendly process, energy-sustainable, simple, and with low-chemical reagent consumption. The chemical composition of the obtained pulps was analyzed in order to study its influence in the nanofibrillation process. Cellulosic fibers were subjected to two different pretreatments, mechanical and TEMPO(2,2,6,6-Tetramethyl-piperidin-1-oxyl)-mediated oxidation, followed by high-pressure homogenization to produce different lignocellulose nanofibers. Then, LCNF were deeply characterized in terms of nanofibrillation yield, cationic demand, carboxyl content, morphology, crystallinity, and thermal stability. The suitability of each raw material to produce lignocellulose nanofibers was analyzed from the point of view of each pretreatment. TEMPO-mediated oxidation was identified as a more effective pretreatment to produce LCNF, however, it produces a decrease in the thermal stability of the LCNF. The different LCNF were added as reinforcing agent on recycled paperboard and compared with the improving produced by the industrial mechanical beating. The analysis of the papersheets' mechanical properties shows that the addition of LCNF as a reinforcing agent in the paperboard recycling process is a viable alternative to mechanical beating, achieving greater reinforcing effect and increasing the products' life cycles.


Assuntos
Lignina/química , Lignina/isolamento & purificação , Nanofibras/química , Papel , Extratos Vegetais/química , Capsicum/química , Solanum lycopersicum/química , Reciclagem , Solanum melongena/química
6.
Foods ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708923

RESUMO

The aim of this study was to model the growth and survival behaviour of Salmonella Reading and endogenous lactic acid bacteria on fresh pre-cut iceberg lettuce stored under modified atmosphere packaging for 10 days at different temperatures (4, 8 and 15 °C). The Baranyi and Weibull models were satisfactorily fitted to describe microbial growth and survival behaviour, respectively. Results indicated that lactic acid bacteria (LAB) could grow at all storage temperatures, while S. Reading grew only at 15 °C. Specific growth rate values (µmax) for LAB ranged between 0.080 and 0.168 h-1 corresponding to the temperatures 4 and 15 °C while for S. Reading at 15 °C, µmax = 0.056 h-1. This result was compared with published predictive microbiology models for other Salmonella serovars in leafy greens, revealing that predictions from specific models could be valid for such a temperature, provided they were developed specifically in lettuce regardless of the type of serovars inoculated. The parameter delta obtained from the Weibull model for the pathogen was found to be 16.03 and 18.81 for 4 and 8 °C, respectively, indicating that the pathogen underwent larger reduction levels at lower temperatures (2.8 log10 decrease at 4 °C). These data suggest that this Salmonella serovar is especially sensitive to low temperatures, under the assayed conditions, while showcasing that a correct refrigeration could be an effective measure to control microbial risk in commercial packaged lettuce. Finally, the microbiological data and models from this study will be useful to consider more specifically the behaviour of S. Reading during transport and storage of fresh-cut lettuce, elucidating the contribution of this serovar to the risk by Salmonella in leafy green products.

7.
Food Microbiol ; 90: 103498, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336378

RESUMO

This study was aimed at characterizing microbiologically Gilthead sea bream (Sparus aurata) and Sea bass (Dicentrarchus labrax) produced in two estuarine ecosystems in Andalusia (Spain): the estuary of the river Guadalquivir (La Puebla del Río, Sevilla) (A), and the estuary of the river Guadiana (Ayamonte, Huelva) (B). The collected fish individuals and water were analysed for hygiene indicator microorganisms and pathogens. The statistical analysis of results revealed that microbial counts for the different microbiological parameters were not statistically different for fish type. On the contrary, considering anatomic part, viscera showed significantly higher concentrations for Enterobacteriaceae, total coliforms and for Staphylococcus spp. coagulase +. Furthermore, location A showed in water and fish higher levels for lactic acid bacteria, aerobic mesophilic bacteria, Enterobacteriaceae, total coliforms and Staphylococcus spp. coagulase +. Neither Listeria monocytogenes, nor Salmonella spp. were detected, though Vibrio parahaemolyticus was identified, molecularly, in estuarine water in location B. The predictive analysis demonstrated that the initial microbiological quality could have an impact on product shelf-life, being longer for location B, with better microbiological quality. Results stress the relevance of preventing the microbiological contamination of water in estuary production systems in order to assure the quality and safety of Gilthead sea bream and Sea bass.


Assuntos
Aquicultura , Bactérias/isolamento & purificação , Bass/microbiologia , Doenças dos Peixes/microbiologia , Dourada/microbiologia , Animais , Bactérias/classificação , Bactérias/patogenicidade , Ecossistema , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/patogenicidade , Estuários , Doenças dos Peixes/epidemiologia , Armazenamento de Alimentos , Prevalência , Alimentos Marinhos/microbiologia , Espanha/epidemiologia , Staphylococcus/isolamento & purificação , Staphylococcus/patogenicidade , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/patogenicidade
8.
Food Microbiol ; 86: 103346, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703876

RESUMO

This work aimed to study the effect of the combination of Sodium hypochlorite, the most used disinfectant by the vegetable industry, with a natural antimicrobial, benzyl-isothiocyanate (BITC), considering cutting surface and contact time, on the reduction of Salmonella in fresh-cut produce in washing operations under typical industrial conditions. Overall, the combinations of disinfectant and process parameters resulted in a mean reduction of Salmonella of 2.5 log CFU/g. According to statistical analysis, free chlorine and BITC concentrations, contact time and cut size exerted a significant effect on the Salmonella reduction (p ≤ 0.05). The optimum combination of process parameter values yielding the highest Salmonella reduction was a lettuce cut size of 15 cm2 washed for 110 s in industrial water containing 160 mg/L free chlorine and 40 mg/L BITC. A predictive model was also derived, which, as illustrated, could be applied to optimize industrial disinfection and develop probabilistic Exposure Assessments considering the effect of washing process parameters on the levels of Salmonella contamination in leafy green products. The present study demonstrated the efficacy of chlorine to reduce Salmonella populations in fresh-cut lettuce while highlighting the importance of controlling the washing process parameters, such as, contact time, cut size and concentration of the disinfectant to increase disinfectant efficacy and improve food safety.


Assuntos
Cloro/farmacologia , Desinfecção/métodos , Manipulação de Alimentos/métodos , Isotiocianatos/farmacologia , Lactuca/microbiologia , Salmonella/efeitos dos fármacos , Desinfetantes/farmacologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Inocuidade dos Alimentos , Lactuca/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Hipoclorito de Sódio/farmacologia , Fatores de Tempo , Verduras/crescimento & desenvolvimento , Verduras/microbiologia
9.
Int J Biol Macromol ; 141: 197-206, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479671

RESUMO

Nanocelluloses with and without residual lignin were isolated from wheat straw. In addition, the effect of TEMPO-mediated oxidation on the production of lignin-containing nanocellulose was studied. The different nanocelluloses were used as reinforcing agent in Poly(vinyl alcohol) films. The morphology, crystallinity, surface microstructure, barrier properties, light transmittance, mechanical and antioxidant properties were evaluated. The translucency of films was reduced by the addition of nanocellulose, however, the ability to block UV-light increased from 10% for PVA to >50% using lignin-containing nanocellulose, and 30% for lignin-free samples. The mechanical properties increased considerably, however, for loads higher than 5% a negative trend was observed presumptively due to a clustering of nanocellulose components in PVA matrix. The barrier properties of the films were improved with the use of nanocellulose, especially at small amounts (1-3%). The antioxidant capacity of films was increased up to 10% using lignin-containing nanocellulose compared to 4.7% using PVA.


Assuntos
Materiais Biocompatíveis/química , Lignina/química , Membranas Artificiais , Nanocompostos/química , Álcool de Polivinil/química , Antioxidantes/química , Antioxidantes/farmacologia , Fenômenos Químicos , Fenômenos Mecânicos , Nanocompostos/ultraestrutura , Análise Espectral , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...