Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cold Spring Harb Protoc ; 2024(3): pdb.prot108189, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160329

RESUMO

For most Anopheles species, larval-pupal metamorphosis commences ∼1 wk after egg hatching. However, depending on the amount of food provided, H2O temperature, and larval density, the pupation process can be accelerated or delayed. Synchronous pupation is difficult to accomplish consistently, and, thus, pupae need to be separated from larvae daily. Adult emergence will take place 24-48 h after pupation. Most adults will eclose before the next morning (light cycle) in many species. Here, we provide information on some methods available to collect pupae and to sort pupae by sex. Notably, pupa collection and sorting are some of the most time-consuming procedures of the overall mosquito rearing process. Some methods mentioned here attempt to help reduce work effort and time required.


Assuntos
Anopheles , Animais , Pupa , Larva , Metamorfose Biológica , Transporte Proteico
2.
Cold Spring Harb Protoc ; 2024(3): pdb.prot108186, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160330

RESUMO

Gravid (i.e., with fully developed eggs), mated Anopheles females typically lay their eggs directly on water ∼48-72 h after a blood meal. Unlike some other mosquito species, Anopheles eggs cannot be desiccated and stored for long durations, and, hence, colonies must be reared continuously. In this protocol, we discuss methods for egg collection, including individual and en masse oviposition; egg disinfection to avoid the transmission of infectious agents to the next generation; and egg hatching for colony maintenance or experimentation. We also include optional methods for estimating life history traits such as fecundity, fertility, and larval mortality rates from egg counts.


Assuntos
Anopheles , Animais , Feminino , Desinfecção , Oviposição , Larva , Fatores de Tempo
3.
Cold Spring Harb Protoc ; 2024(3): pdb.top107802, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160331

RESUMO

Anopheles mosquitoes can transmit several human pathogens, including viruses such as o'nyong-nyong and parasites including Plasmodium spp. and Wuchereria spp., which cause malaria and filariasis, respectively. Rearing Anopheles species of medical importance under laboratory conditions allows researchers to carry out experiments to better understand their genetics, physiology, and behavior. However, Anopheles species vary in how easily they can be reared in the laboratory, and some species have been difficult to colonize. Once established, members of the important African Anopheles gambiae complex thrive following a standard protocol and are predictable in growth and development rates. Here, we provide useful basic information and guidance to successfully maintain colonies of A. gambiae and other species of Anopheles in a laboratory setting. We also provide an example of a 3-wk rearing schedule that produces sufficient numbers of mosquitoes while minimizing the work required during weekends. In the accompanying protocols, we detail efficient methods and techniques suitable for several species of this genus at the egg, larva, pupae, and adult stages; however, it will be necessary for researchers to adjust methods as needed based on site-specific rearing observations of their particular strains.


Assuntos
Anopheles , Animais , Humanos , Anopheles/parasitologia
4.
Cold Spring Harb Protoc ; 2024(3): pdb.prot108188, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160333

RESUMO

The adult stage is the only nonaquatic stage of the Anopheles mosquito. Both male and female Anopheles mosquitoes require access to a source of sugar to survive. In the insectary, a temperature of ∼27°C and 80% relative humidity and a cycle of 12 h light:12 h dark light, ideally with a sunrise and sunset period, are necessary minimum conditions to mimic their natural environment. Laboratory-reared Anopheles can survive for over a month; however, decreased activity and increased mortality may be observed ∼2 wk postemergence depending on the species and health of the colony. Details on how to maintain adults Anopheles are discussed here. Information and considerations on blood and sugar feeding are described. This protocol also provides instructions on how to differentiate male and female adult mosquitoes.


Assuntos
Anestesia , Anopheles , Animais , Masculino , Feminino , Temperatura , Laboratórios , Açúcares
5.
Cold Spring Harb Protoc ; 2024(3): pdb.prot108187, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160332

RESUMO

Mosquito larvae are aquatic and go through four development stages (larval instars L1-L4) before pupation. Species vary in the duration of larval development, and a variety of external factors affect the development rate (e.g., water temperature, food type, and larval density), which are discussed more thoroughly elsewhere. Here, we detail how to rear Anopheles larvae. This protocol describes appropriate distribution of larvae into rearing pans, feeding of larvae, cleaning of pans, and care until pupation.


Assuntos
Anopheles , Animais , Larva , Temperatura , Água
6.
Sci Rep ; 10(1): 21974, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319823

RESUMO

Anopheles gambiae mosquitoes are the most important vectors of human malaria. The reproductive success of these mosquitoes relies on a single copulation event after which the majority of females become permanently refractory to further mating. This refractory behavior is at least partially mediated by the male-synthetized steroid hormone 20-hydroxyecdysone (20E), which is packaged together with other seminal secretions into a gelatinous mating plug and transferred to the female atrium during mating. In this study, we show that two 20E-regulated chymotrypsin-like serine proteases specifically expressed in the reproductive tract of An. gambiae females play an important role in modulating the female susceptibility to mating. Silencing these proteases by RNA interference impairs correct plug processing and slows down the release of the steroid hormone 20E from the mating plug. In turn, depleting one of these proteases, the Mating Regulated Atrial Protease 1 (MatRAP1), reduces female refractoriness to further copulation, so that a significant proportion of females mate again. Microscopy analysis reveals that MatRAP1 is localized on a previously undetected peritrophic matrix-like structure surrounding the mating plug. These data provide novel insight into the molecular mechanisms shaping the post-mating biology of these important malaria vectors.


Assuntos
Anopheles/anatomia & histologia , Anopheles/enzimologia , Peptídeo Hidrolases/metabolismo , Comportamento Sexual Animal , Animais , Anopheles/ultraestrutura , Regulação para Baixo , Ecdisterona/metabolismo , Feminino , Inseminação , Modelos Biológicos
7.
PLoS One ; 15(11): e0241492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170865

RESUMO

As a means of obtaining reproducible and accurate numbers of larvae for laboratory rearing, we tested a large-particle flow-cytometer type device called the 'Automated Particle Counter' (APC). The APC is a gravity-fed, self-contained unit that detects changes in light intensity caused by larvae passing the detector in a water stream and controls dispensing by stopping the flow when the desired number has been reached. We determined the accuracy (number dispensed compared to the target value) and precision (distribution of number dispensed) of dispensing at a variety of counting sensitivity thresholds and larva throughput rates (larvae per second) using < 1-day old Anopheles gambiae and Aedes aegypti larvae. All measures were made using an APC algorithm called the 'Smoothed Z-Score' which allows the user to define how many standard deviations (Z scores) from the baseline light intensity a particle's absorbance must exceed to register a count. We dispensed a target number of 100 An. gambiae larvae using Z scores from 2.5-8 and observed no difference among them in the numbers dispensed for scores from 2.5-6, however, scores of 7 and 8 under-counted (over-dispensed) larvae. Using a Z score ≤ 6, we determined the effect of throughput rate on the accuracy of the device to dispense An. gambiae larvae. For rates ≤ 98 larvae per second, the accuracy of dispensing a target of 100 larvae was - 2.29% ± 0.72 (95% CI of the mean) with a mode of 99 (49 of 348 samples). When using a Z score of 3.5 and rates ≤ 100 larvae per second, the accuracy of dispensing a target of 100 Ae. aegypti was - 2.43% ± 1.26 (95% CI of the mean) with a mode of 100 (6 of 42 samples). No effect on survival was observed on the number of An. gambiae first stage larvae that reached adulthood as a function of dispensing.


Assuntos
Anopheles/fisiologia , Citometria de Fluxo/instrumentação , Laboratórios , Análise de Variância , Animais , Automação , Larva , Análise de Sobrevida
8.
Acta Trop ; 201: 105204, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31574253

RESUMO

Gut microbiota communities in mosquitoes are influenced among others, by developmental stage. There is evidence that the aquatic environment where larvae feed influences the mosquito gut bacterial community composition with only a subgroup of these bacteria been transmitted trans-stadially to adults. This study evaluated the gut bacterial composition of Anopheles albimanus larvae, emerged and circulating mosquitoes, as well as water from the larval habitat, to elucidate transitions in these bacterial communities and determine the final composition in circulating mosquitoes. A 16S rRNA Illumina sequencing allowed to determine that Proteobacteria was the most abundant phylum in larvae (72.4%), emerged mosquitoes (75%), circulating adults (45.4%) and water from the larval habitat (79.1%). A core microbiome analysis evidenced that Enterobacter, Bacillus and Staphylococcus genera were the core bacterial microbiota (OTUs detected in >90%) in the four groups evaluated. PCoA cluster based on Jaccard and Bray Curtis distances showed two main bacterial clusters, one comprising the emerged and circulating adults, and the other the larvae. The results indicated that the gut microbiota of An. albimanus larvae is composed of bacteria acquired from the larval habitat; then, a rearrangement of the bacterial communities occurs in the trans-stadial passage. However, the higher bacterial richness detected in circulating adults suggests bacterial acquisition from the terrestrial environment where the mosquito feeds. Finally, the trans-stadially passage of some bacteria makes of interest their evaluation as candidates for paratransgenic control.


Assuntos
Anopheles/genética , Anopheles/microbiologia , Microbioma Gastrointestinal/genética , Larva/genética , Larva/microbiologia , Pupa/microbiologia , Fatores Etários , Animais , Colômbia , Pupa/genética
9.
PLoS One ; 14(12): e0225833, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790474

RESUMO

The understanding of factors affecting the gut bacterial communities in malaria vectors is essential for the design of vector control interventions, such as those based on a paratransgenic approach. One of the requirements of this method is the availability of bacteria from the mosquito susceptible to culture. Thus, the aim of this study was to evaluate the composition and structure of the culturable gut bacterial communities in field mosquitoes Anopheles albimanus from Colombia, in addition to generate a bacterial collection to further analyze microbial functional activity. Gut bacteria were isolated from An. albimanus larvae and adult mosquitoes collected in localities of the Atlantic and Pacific Coasts. The bacterial isolates were grouped in 28 morphospecies that corresponded to three phyla, three classes, nine families and 14 genera. The larvae guts from San Antero (Atlantic Coast) and Buenaventura (Pacific Coast) shared the genera Bacillus and Lysinibacillus and in adults, Bacillus and Bacillus cereus Group were registered in both localities. Gut bacterial richness was higher in adults from the Pacific with respect to the Atlantic Coast, while larval richness was similar in samples of both coasts. The Shannon index indicated uniformity in morphospecies abundances in both localities. Finally, the characterization of morphospecies from the gut of Anopheles albimanus mosquitoes from Colombia by culture-dependent methods complemented with 16S rRNA gene sequencing allowed the definition, at a finer resolution, of the composition and structure of these microbial communities. In addition, the obtained bacterial culture collection will allow further evaluation of the microorganisms for their potential as biocontrol agents.


Assuntos
Anopheles/microbiologia , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Algoritmos , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Sequência de Bases , Teorema de Bayes , Biodiversidade , Colômbia , Resistência Microbiana a Medicamentos , Geografia , Larva/microbiologia , Filogenia , RNA Ribossômico 16S/genética
10.
Nat Microbiol ; 4(6): 941-947, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30911126

RESUMO

Malaria, a major cause of child mortality in Africa, is engendered by Plasmodium parasites that are transmitted by anopheline mosquitoes. Fitness of Plasmodium parasites is closely linked to the ecology and evolution of its anopheline vector. However, whether the genetic structure of vector populations impacts malaria transmission remains unknown. Here, we describe a partitioning of the African malaria vectors into generalists and specialists that evolve along ecological boundaries. We next identify the contribution of mosquito species to Plasmodium abundance using Granger causality tests for time-series data collected over two rainy seasons in Mali. We find that mosquito microevolution, defined by changes in the genetic structure of a population over short ecological timescales, drives Plasmodium dynamics in nature, whereas vector abundance, infection prevalence, temperature and rain have low predictive values. Our study demonstrates the power of time-series approaches in vector biology and highlights the importance of focusing local vector control strategies on mosquito species that drive malaria dynamics.


Assuntos
Evolução Molecular , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Animais , Anopheles/genética , Ecossistema , Genótipo , Humanos , Proteínas de Insetos/genética , Malária/epidemiologia , Malária/transmissão , Mali , Prevalência , Chuva , Estações do Ano , Especificidade da Espécie , Temperatura
11.
Microbiome ; 6(1): 148, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30149801

RESUMO

BACKGROUND: The understanding of the roles of gut bacteria in the fitness and vectorial capacity of mosquitoes that transmit malaria, is improving; however, the factors shaping the composition and structure of such bacterial communities remain elusive. In this study, a high-throughput 16S rRNA gene sequencing was conducted to understand the effect of developmental stage, feeding status, species, and geography on the composition of the gut bacterial microbiota of two main Colombian malaria vectors, Anopheles nuneztovari and Anopheles darlingi. RESULTS: The results revealed that mosquito developmental stage, followed by geographical location, are more important determinants of the gut bacterial composition than mosquito species or adult feeding status. Further, they showed that mosquito gut is a major filter for environmental bacteria colonization. CONCLUSIONS: The sampling design and analytical approach of this study allowed to untangle the influence of factors that are simultaneously shaping the microbiota composition of two Latin-American malaria vectors, essential aspect for the design of vector biocontrol strategies.


Assuntos
Anopheles/microbiologia , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Mosquitos Vetores/microbiologia , Animais , Anopheles/fisiologia , Bactérias/classificação , Bactérias/genética , Colômbia , DNA Bacteriano/genética , Comportamento Alimentar , Feminino , Humanos , Malária/transmissão , Mosquitos Vetores/fisiologia , RNA Ribossômico 16S/genética
12.
Sci Rep ; 8(1): 6594, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700344

RESUMO

Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species.


Assuntos
Anopheles , Ecologia , Reprodução , Comportamento Sexual Animal , Animais , Anopheles/genética , Burkina Faso , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Transcriptoma
13.
Biomedica ; 37(0): 98-105, 2017 Mar 29.
Artigo em Espanhol | MEDLINE | ID: mdl-29161482

RESUMO

INTRODUCTION: In Colombia there are three Anopheles species implicated in malaria transmission as primary vectors; however, the local role of some Anopheles species must still be defined. OBJECTIVE: To determine the abundance, composition and natural infection rates for Anopheles mosquitoes with Plasmodium spp. in two malaria-endemic regions of Colombia. MATERIALS AND METHODS: Anopheles mosquitoes were collected using the human-landing catches and while resting in livestock corrals in nine localities of two malaria-endemic regions of Colombia. Mosquitoes were morphologically identified and confirmed by PCR-RFLP-ITS2. Identified mosquitoes were processed and tested for Plasmodium parasite infection by ELISA and ssrRNA-based nested PCR. RESULTS: We collected 1,963 Anopheles mosquitoes corresponding to nine species. The most abundant species were Anopheles nuneztovari (53.5%) and A. darlingi (34.5%), followed by A. triannulatus s.l. (6%), and other species (≈5.9%). Three species were naturally infected with Plasmodium spp.: A. darlingi, A. nuneztovari and A. triannulatus s.l. CONCLUSIONS: Natural infection of A. darlingi and A. nuneztovari indicate that these malaria vectors continue to be effective carriers of Plasmodium in the localities under study in Valle del Cauca and Chocó. Additionally, the infected A. triannulatus s.l. collected in livestock corrals in the locality of the department of Córdoba suggests the need for further studies to define the epidemiological importance of this species given its abundance and opportunistic anthropophilic behavior.


Assuntos
Anopheles/parasitologia , Doenças Endêmicas , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium/isolamento & purificação , Animais , Anopheles/genética , Anopheles/fisiologia , Cidades , Colômbia/epidemiologia , DNA de Protozoário/análise , DNA Ribossômico/análise , DNA Espaçador Ribossômico/análise , Comportamento Alimentar , Feminino , Geografia Médica , Humanos , Malária/epidemiologia , Mosquitos Vetores/fisiologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
14.
Biomédica (Bogotá) ; 37(supl.2): 98-105, jul.-set. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888529

RESUMO

Abstract Introduction: In Colombia there are three Anopheles species implicated in malaria transmission as primary vectors; however, the local role of some Anopheles species must still be defined. Objective: To determine the abundance, composition and natural infection rates for Anopheles mosquitoes with Plasmodium spp. in two malaria-endemic regions of Colombia. Materials and methods: Anopheles mosquitoes were collected using the human-landing catches and while resting in livestock corrals in nine localities of two malaria-endemic regions of Colombia. Mosquitoes were morphologically identified and confirmed by PCR-RFLP-ITS2. Identified mosquitoes were processed and tested for Plasmodium parasite infection by ELISA and ssrRNA-based nested PCR. Results: We collected 1,963 Anopheles mosquitoes corresponding to nine species. The most abundant species were Anopheles nuneztovari (53.5%) and A. darlingi (34.5%), followed by A. triannulatus s.l. (6%), and other species (˜5.9%). Three species were naturally infected with Plasmodium spp.: A. darlingi, A. nuneztovari and A. triannulatus s.l. Conclusions: Natural infection of A. darlingi and A. nuneztovari indicate that these malaria vectors continue to be effective carriers of Plasmodium in the localities under study in Valle del Cauca and Chocó. Additionally, the infected A. triannulatus s.l. collected in livestock corrals in the locality of the department of Córdoba suggests the need for further studies to define the epidemiological importance of this species given its abundance and opportunistic anthropophilic behavior.


Resumen Introducción. En Colombia hay tres especies de mosquitos Anopheles implicadas como vectores primarios en la transmisión de la malaria o paludismo; sin embargo, el rol local de algunas especies de Anopheles aún debe determinarse. Objetivo. Determinar la abundancia, la composición y la infección natural de mosquitos anofelinos con Plasmodium spp. en dos regiones endémicas de malaria en Colombia. Materiales y métodos. Se recolectaron mosquitos del género Anopheles usando los métodos de recolección con cebo humano y en reposo en corrales de ganado vacuno, en nueve localidades de dos regiones endémicas para malaria en Colombia. Los especímenes se identificaron morfológicamente y se confirmaron por reacción en cadena de la polimerasa (PCR) de los polimorfismos en la longitud de los fragmentos de restricción (Restriction Fragment Length Polymorphism, RFLP) en el espaciador intergénico ribosómico nuclear 2 (Internal Transcribed Spacer, ITS-2) (PCR-RFLPITS2). Los especímenes se procesaron y analizaron mediante ELISA y PCR anidada basada en la subunidad pequeña del ARN ribosómico (small subunit ribosomal RNA, ssrRNA) para determinar la infección por Plasmodium. Resultados. Se recolectaron 1.963 mosquitos Anopheles correspondientes a nueve especies. Anopheles nuneztovari fue la especie predominante (53,5 %), seguida por A. darlingi (34,5 %), A. triannulatus s.l. (6 %) y por otras especies (˜5,9 %). Tres especies se encontraron naturalmente infectadas con Plasmodium spp.: A. darlingi, A. nuneztovari y A. triannulatus s.l. Conclusiones. La infección natural de A. darlingi y A. nuneztovari indica que estos vectores primarios siguen siendo actores principales en la transmisión de malaria en las localidades estudiadas de los departamentos del Valle del Cauca y Chocó. Además, el espécimen A. triannulatus s.l. infectado, recolectado en corrales de animales de la localidad estudiada en el departamento de Córdoba, indica que existe la necesidad de estudios futuros para establecer la importancia epidemiológica de esta especie dada su abundancia y comportamiento antropofílico oportunista.


Assuntos
Animais , Feminino , Humanos , Plasmodium/isolamento & purificação , Doenças Endêmicas , Mosquitos Vetores/parasitologia , Malária/transmissão , Anopheles/parasitologia , Especificidade da Espécie , Polimorfismo de Fragmento de Restrição , DNA Ribossômico/análise , Reação em Cadeia da Polimerase , DNA de Protozoário/análise , Cidades , Colômbia/epidemiologia , DNA Espaçador Ribossômico/análise , Comportamento Alimentar , Geografia Médica , Mosquitos Vetores/fisiologia , Malária/epidemiologia , Anopheles/fisiologia , Anopheles/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...