Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20063, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973820

RESUMO

The COVID-19 disease caused by coronavirus is constantly changing due to the emergence of different variants and thousands of people are dying every day worldwide. Early detection of this new form of pulmonary disease can reduce the mortality rate. In this paper, an automated method based on machine learning (ML) and deep learning (DL) has been developed to detect COVID-19 using computed tomography (CT) scan images extracted from three publicly available datasets (A total of 11,407 images; 7397 COVID-19 images and 4010 normal images). An unsupervised clustering approach that is a modified region-based clustering technique for segmenting COVID-19 CT scan image has been proposed. Furthermore, contourlet transform and convolution neural network (CNN) have been employed to extract features individually from the segmented CT scan images and to fuse them in one feature vector. Binary differential evolution (BDE) approach has been employed as a feature optimization technique to obtain comprehensible features from the fused feature vector. Finally, a ML/DL-based ensemble classifier considering bagging technique has been employed to detect COVID-19 from the CT images. A fivefold and generalization cross-validation techniques have been used for the validation purpose. Classification experiments have also been conducted with several pre-trained models (AlexNet, ResNet50, GoogleNet, VGG16, VGG19) and found that the ensemble classifier technique with fused feature has provided state-of-the-art performance with an accuracy of 99.98%.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Análise por Conglomerados , Generalização Psicológica , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
2.
Sensors (Basel) ; 21(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672585

RESUMO

Currently, COVID-19 is considered to be the most dangerous and deadly disease for the human body caused by the novel coronavirus. In December 2019, the coronavirus spread rapidly around the world, thought to be originated from Wuhan in China and is responsible for a large number of deaths. Earlier detection of the COVID-19 through accurate diagnosis, particularly for the cases with no obvious symptoms, may decrease the patient's death rate. Chest X-ray images are primarily used for the diagnosis of this disease. This research has proposed a machine vision approach to detect COVID-19 from the chest X-ray images. The features extracted by the histogram-oriented gradient (HOG) and convolutional neural network (CNN) from X-ray images were fused to develop the classification model through training by CNN (VGGNet). Modified anisotropic diffusion filtering (MADF) technique was employed for better edge preservation and reduced noise from the images. A watershed segmentation algorithm was used in order to mark the significant fracture region in the input X-ray images. The testing stage considered generalized data for performance evaluation of the model. Cross-validation analysis revealed that a 5-fold strategy could successfully impair the overfitting problem. This proposed feature fusion using the deep learning technique assured a satisfactory performance in terms of identifying COVID-19 compared to the immediate, relevant works with a testing accuracy of 99.49%, specificity of 95.7% and sensitivity of 93.65%. When compared to other classification techniques, such as ANN, KNN, and SVM, the CNN technique used in this study showed better classification performance. K-fold cross-validation demonstrated that the proposed feature fusion technique (98.36%) provided higher accuracy than the individual feature extraction methods, such as HOG (87.34%) or CNN (93.64%).


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador , China , Humanos , Radiografia Torácica , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...