Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 3999, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597642

RESUMO

Optical constituents in the ocean are often categorized as water, phytoplankton, sediments and dissolved matter. However, the optical properties of seawater are influenced, to some degree, by scattering and absorption by all particles in the water column. Here we assess the relevant size ranges for determining the optical properties of the ocean. We present a theoretical basis supporting the hypothesis that millimetre-size particles, including zooplankton and fish eggs, can provide a significant contribution to bulk absorption and scattering of seawater and therefore ocean color. Further, we demonstrate that existing in situ instruments are not capable of correctly resolving the impact of such large particles, possibly leading to their optical significance being overlooked. These findings refresh our perspective on the potential of ocean color and invite new applications of remote sensing for monitoring life close to the ocean surface.

2.
Sci Rep ; 9(1): 686, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679810

RESUMO

Zooplankton provide the key link between primary production and higher levels of the marine food web and they play an important role in mediating carbon sequestration in the ocean. All commercially harvested fish species depend on zooplankton populations. However, spatio-temporal distributions of zooplankton are notoriously difficult to quantify from ships. We know that zooplankton can form large aggregations that visibly change the color of the sea, but the scale and mechanisms producing these features are poorly known. Here we show that large surface patches (>1000 km2) of the red colored copepod Calanus finmarchicus can be identified from satellite observations of ocean color. Such observations provide the most comprehensive view of the distribution of a zooplankton species to date, and alter our understanding of the behavior of this key zooplankton species. Moreover, our findings suggest that high concentrations of astaxanthin-rich zooplankton can degrade the performance of standard blue-green reflectance ratio algorithms in operational use for retrieving chlorophyll concentrations from ocean color remote sensing.


Assuntos
Copépodes/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , Zooplâncton , Animais , Clorofila , Cor , Monitoramento Ambiental/métodos , Noruega , Imagens de Satélites , Xantofilas
3.
J Plankton Res ; 38(3): 604-609, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27274098

RESUMO

High Calanus finmarchicus abundances were recorded in wintertime in Vestfjorden, close to the main cod breeding grounds off Lofoten and Vesterålen, northern Norway. The mean abundance for locations with water depth >500 m was ∼37000 ind. m-2 (range: 26700-49000 ind. m-2). To our knowledge, this is the first report of massive overwintering of C. finmarchicus on the Norwegian shelf. Because of the observed size and location of this population, we argue that local overwintering on the northern Norwegian shelf can contribute significantly to sustain a C. finmarchicus population on the shelf during the period of first feeding for cod larvae. This is supported by a particle tracking model.

4.
J Plankton Res ; 32(8): 1105-1119, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20625559

RESUMO

Three-dimensional data on the mesoscale distribution of hydrography and mesozooplankton were collected at the Polar Front, northwestern Barents Sea, in spring 2008 (29 April-15 May) using a combination of multinet and towed instrument platform equipped with Laser Optical Plankton Counter, fluorometer and CTD. Trophic levels (TLs) within the zooplankton community (whole community and size-separated) were analysed for three consecutive periods using biovolume spectrum theory, which proved to be a powerful tool in the physically and biologically variable frontal system. Trophic structure was highly variable in time and across the Polar Front, but was mostly related to the phytoplankton bloom (as determined by fluorescence). High TLs of 5.5 within the zooplankton community were observed outside bloom situations (mostly in Atlantic Water) and were likely due to increased omnivory of Calanus spp., which dominated the large zooplankton size group that had a lower TL (2.2) during the bloom than outside blooms (max. TL 5.6). A strong input of herbivorous barnacle nauplii (Cirripedia) into the upper layer (35 000 ind. m(-3) in net samples) substantially decreased mean TL in the marginal ice zone. Differences in TL estimates based on biovolume spectrum theory and other methods (stable isotopes, lipid markers, dietary analyses) are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...