Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7887, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550531

RESUMO

The current rationale is exploring new eco-friendly UV- shielding films based on cellulose and thiazolidine. Cellulose was oxidized to dialdehyde cellulose (DAC) and tricarboxy cellulose (TCC) by periodate and TEMPO/periodate/hypochlorite, respectively. While E-3-amino-5-(phenyldiazenyl)-2-thioxothiazolidin-4-one (TH) was synthesized by coupling diazonium salt with the 5-methylene of 2-thioxo-4-thiazolidinone. DAC was then coupled with TH via Schiff base reaction and incorporated onto TCC with different ratios to get UV-shielding films. 1HNMR, infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA) were used to investigate the chemical structure of the synthesized materials. In addition, the films' morphology, thermal, mechanical, and UV-shielding properties were investigated. The UV-shielding studies revealed that the film with 10% DAC-TH has 99.88, 99.99, and 96.19% UV-blocking (UVB), UV-absorbance (UVA), and Ultra-violet protection (UPF), respectively. Moreover, the prepared films demonstrated promising antimicrobial activity against Escherichia coli, S. aureus, P. aeruginosa, and Candida albicans. Finally, the prepared films showed no cytotoxic effects on normal human skin fibroblast's HFB-4 cell line.


Assuntos
Staphylococcus aureus , Raios Ultravioleta , Celulose/química , Celulose/farmacologia , Fenômenos Químicos , Humanos , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...