Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 4756480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685153

RESUMO

In industry, sensor-based monitoring of equipment or environment has become a necessity. Instead of using a single sensor, multi-sensor system is used to fully detect abnormalities in complex scenarios. Recently, physical models, signal processing technology, and various machine learning models have improved the performance. However, these methods either do not consider the potential correlation between features or do not take advantage of the sequential changes of correlation while constructing an anomaly detection model. This paper firstly analyzes the correlation characteristic of a multi-sensor system, which shows a lot of clues to the anomaly/fault propagation. Then, a multi-sensor anomaly detection method, which finds and uses the correlation between features contained in the multidimensional time-series data, is proposed. The method converts the multidimensional time-series data into temporal correlation graphs according to time window. By transforming time-series data into graph structure, the task of anomaly detection is considered as a graph classification problem. Moreover, based on the stability and dynamics of the correlation between features, a structure-sensitive graph neural network is used to establish the anomaly detection model, which is used to discover anomalies from multi-sensor system. Experiments on three real-world industrial multi-sensor systems with anomalies indicate that the method obtained better performance than baseline methods, with the mean value of F1 score reaching more than 0.90 and the mean value of AUC score reaching more than 0.95. That is, the method can effectively detect anomalies of multidimensional time series.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Fatores de Tempo
2.
J Healthc Eng ; 2022: 9581387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399840

RESUMO

Prior to COVID-19, the tourism industry was one of the important sectors of the world economy. This study intends to measure the perception of Chinese tourists concerning the spread of COVID-19 in China. The crowding perception, xenophobia, and ethnocentrism are the measurement indicators of the study. A five-point Likert scale is used to predict the perception of the tourists in various destinations. The Kaiser-Mayer-Olkin test and Cronbach's alpha are conducted to ensure the validity and reliability of the corresponding items. SPSS version 21 is used to obtain factor loading, mean values, and standard deviation. Regression analysis is used to measure the strength of the constructs' relationship and prove the hypotheses. Questionnaires have been filled from 730 Chinese respondents. Artificial neural networks and confusion matrices are used for validation and performance evaluation, respectively. Results show that crowding perception, xenophobia, and ethnocentrism caused the spread of COVID-19 during the epidemic. Hence, the tourism industry in China is adversely affected by COVID-19. The crisis management stakeholders of the country need to adopt policies to reduce the spread of COVID-19. The tourism sector needs to provide confidence to the tourists. It will provide ground for the mental strength of the tourists in China.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Humanos , Redes Neurais de Computação , Reprodutibilidade dos Testes , Turismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...