Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Heart Lung Transplant ; 24(11): 1915-29, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16297800

RESUMO

BACKGROUND: Freeze-tolerant fish survive sub-zero temperatures by non-colligatively lowering the freezing temperature of their body fluids using anti-freeze proteins (AFPs). We sought to evaluate and compare the effects of prolonged sub-zero cryopreservation of transplanted rat hearts using AFP I or AFP III. METHODS: Two heterotopic rat heart transplantation protocols were used. In Protocol 1 (n = 104), hearts (n = 8/group) were preserved for 12, 18 and 24 hours in University of Wisconsin solution (UW) at 4 degrees C, UW at -1.3 degrees C, UW/AFP I at -1.3 degrees C and UW/AFP III at -1.3 degrees C, with and without nucleation. Post-operative evaluation consisted of visual viability scoring of the hearts after 60 minutes. Protocol 2 (n = 58) involved evaluation of 24-hour post-transplant viability, echocardiography (fractional shortening [FS], left ventricular end-systolic and -diastolic diameter [ESD, EDD] and anterior and posterior wall systolic and diastolic thickness [AWT-S, AWT-D, PWT-S, PWT-D]), TUNEL staining and electron microscopy (EM) findings for hearts preserved for 18, 21 and 24 hours in UW at 4 degrees C or UW/AFP III at -1.3 degrees C. RESULTS: Hearts preserved in UW at -1.3 degrees C with nucleation froze and died. Three of 8 hearts preserved in UW at 4 degrees C for 24 hours died, whereas all hearts preserved at -1.3 degrees C survived. Hearts preserved in UW/AFP for 18 and 24 hours at -1.3 degrees C had superior viability scores compared with those in UW at 4 degrees C. Hearts in AFP III at -1.3 degrees C displayed greater AWT-S and AWT-D (3.5 +/- 0.2 vs 2.4 +/- 0.2, p < 0.05, and 3.5 +/- 0.2 vs 2.2 +/- 0.2, p < 0.05, respectively) after 18-hour preservation. In the 21-hour preservation group, AFP-treated hearts displayed improved echocardiographic systolic contraction indices, including: improved FS (27 +/- 3.7 vs 15 +/- 4, p = 0.04); diminished ESD (0.28 +/- 0.57 vs 0.47 +/- 0.6, p < 0.05); greater AWT-S (3.4 +/- 0.18 vs 2.8 +/- 0.2, p < 0.05); and fewer positively TUNEL-stained nuclei per specimen (35 +/- 14 vs 5.3 +/- 2.7, p = 0.04). Also, improved EM scores were noted compared with UW at 4 degrees C. CONCLUSIONS: In prolonged sub-zero cryopreservation, AFPs protect the heart from freezing, improve survival and hemodynamics, and reduce apoptotic cell death.


Assuntos
Proteínas Anticongelantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criopreservação/métodos , Transplante de Coração , Coração , Preservação de Órgãos/métodos , Adenosina , Alopurinol , Animais , Temperatura Baixa , Ecocardiografia , Glutationa , Transplante de Coração/imunologia , Transplante de Coração/fisiologia , Insulina , Mitocôndrias Cardíacas/patologia , Soluções para Preservação de Órgãos , Rafinose , Ratos , Ratos Sprague-Dawley , Sarcômeros/patologia , Transplante Heterotópico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...