Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967283

RESUMO

INTRODUCTION: Microtubule (MT) stability is crucial for proper neuronal function. Understanding MT dysregulation is critical for connecting amyloid beta (Aß) and tau-based degenerative events and early changes in presymptomatic Alzheimer's disease (AD). Herein we present positron emission tomography (PET) imaging properties of our MT-PET radiotracer, [11C]MPC-6827, in multiple established AD mouse models. METHODS: Longitudinal PET, biodistribution, autoradiography, immunohistochemistry, and behavioral studies were conducted at multiple time points in APPswe/PSEN1dE9 (APP/PS1), P301S-PS19 (P301S), 5xFAD, and age-matched control mice. RESULTS: Longitudinal [11C]MPC-6827 brain imaging showed significant increases in APP/PS1, P301S, and 5xFAD mice compared to controls. Longitudinal MT-PET correlated positively with biodistribution, autoradiography, and immunohistochemistry results and negatively with behavior data. DISCUSSION: Our study demonstrated significant longitudinal [11C]MPC-6827 PET increases in multiple AD mouse models for the first time. Strong correlations between PET and biomarker data underscored the interplay of MT destabilization, amyloid, and tau pathology in AD. These results suggest [11C]MPC-6827 PET as a promising tool for monitoring MT dysregulation early in AD progression. HIGHLIGHTS: Longitudinal positron emission tomography (PET) imaging studies using [11C]MPC-6827 in multiple established Alzheimer's disease (AD) mouse models revealed an early onset of microtubule dysregulation, with significant changes in brain radiotracer uptake evident from 2 to 4 months of age. Intra-group analysis showed a progressive increase in microtubule dysregulation with increasing AD burden, supported by significant correlations between PET imaging data and biodistribution, autoradiography, and molecular pathological markers. [11C]MPC-6827 PET imaging demonstrated its efficacy in detecting early microtubule alterations preceding observable behavioral changes in AD mouse models, suggesting its potential for early AD imaging. The inclusion of the 5xFAD mouse model further elucidated the impact of amyloid beta (Aß) toxicity on inducing tau hyperphosphorylation-mediated microtubule dysregulation, highlighting the versatility of [11C]MPC-6827 in delineating various aspects of AD pathology. Our study provides immediate clarity on high uptake of the microtubule-based radiotracer in AD brains in a longitudinal setting, which directly informs clinical utility in Aß/tau-based studies.

2.
J Med Chem ; 66(13): 9120-9129, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315328

RESUMO

G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Ligantes , Diabetes Mellitus Tipo 2/tratamento farmacológico , Radioquímica , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor , Receptores Acoplados a Proteínas G/metabolismo
3.
Biomed Pharmacother ; 156: 113937, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411624

RESUMO

Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Hepáticas , Masculino , Animais , Ratos , Camundongos , Ligantes , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Carcinoma de Células Escamosas de Cabeça e Pescoço , Roedores/metabolismo , Ácido Ascórbico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Doxorrubicina , Primatas/metabolismo
4.
Bioorg Med Chem Lett ; 29(23): 126707, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630858

RESUMO

We have synthesized a new series of 1,2,3-triazolo piperazine and piperidine carboxylate derivatives using a simple and one-pot click chemistry with significantly reduced reaction times (~5 min) and enhanced reaction yields (~95-98%). The fourteen novel compounds thus synthesized were tested for ability to target GPR119, a G-protein coupled target receptor that plays critical role in regulation of type-2 diabetes mellitus. Four analogs (3e, 3g, 5e and 5g) demonstrated similar or better EC50 values over previously reported AR231453 activity towards GPR119.


Assuntos
Química Click/métodos , Piperazina/uso terapêutico , Piperidinas/uso terapêutico , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Humanos , Estrutura Molecular , Piperazina/farmacologia , Piperidinas/farmacologia , Relação Estrutura-Atividade
5.
EJNMMI Res ; 9(1): 43, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101996

RESUMO

BACKGROUND: Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS: We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS: KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/µmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION: This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...