Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(5): e4081, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38934382

RESUMO

Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.


Assuntos
Butirofilinas , Imunomodulação , Neoplasias , Humanos , Butirofilinas/metabolismo , Butirofilinas/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunomodulação/efeitos dos fármacos , Imunoterapia , Microambiente Tumoral/imunologia
2.
Sci Rep ; 14(1): 13497, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866982

RESUMO

Antimicrobial peptides (AMPs) have sparked significant interest as potential anti-cancer agents, thereby becoming a focal point in pursuing novel cancer-fighting strategies. These peptides possess distinctive properties, underscoring the importance of developing more potent and selectively targeted versions with diverse mechanisms of action against human cancer cells. Such advancements would offer notable advantages compared to existing cancer therapies. This research aimed to examine the toxicity and selectivity of the nrCap18 peptide in both cancer and normal cell lines. Furthermore, the rate of cellular death was assessed using apoptosis and acridine orange/ethidium bromide (AO/EB) double staining at three distinct incubation times. Additionally, the impact of this peptide on the cancer cell cycle and migration was evaluated, and ultimately, the expression of cyclin-dependent kinase 4/6 (CDK4/6) genes was investigated. The results obtained from the study demonstrated significant toxicity and selectivity in cancer cells compared to normal cells. Moreover, a strong progressive increase in cell death was observed over time. Furthermore, the peptide exhibited the ability to halt the progression of cancer cells in the G1 phase of the cell cycle and impede their migration by suppressing the expression of CDK4/6 genes.


Assuntos
Apoptose , Neoplasias da Mama , Catelicidinas , Quinase 4 Dependente de Ciclina , Humanos , Animais , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Apoptose/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Feminino , Coelhos , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Quinase 6 Dependente de Ciclina/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...