Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 28(3): 1161-1172, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37878422

RESUMO

We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzhen (China). The competition required participants to automatically assess the number of lymphocytes, in particular T-cells, in images of colon, breast, and prostate cancer stained with CD3 and CD8 immunohistochemistry. Differently from other challenges setup in medical image analysis, LYSTO participants were solely given a few hours to address this problem. In this paper, we describe the goal and the multi-phase organization of the hackathon; we describe the proposed methods and the on-site results. Additionally, we present post-competition results where we show how the presented methods perform on an independent set of lung cancer slides, which was not part of the initial competition, as well as a comparison on lymphocyte assessment between presented methods and a panel of pathologists. We show that some of the participants were capable to achieve pathologist-level performance at lymphocyte assessment. After the hackathon, LYSTO was left as a lightweight plug-and-play benchmark dataset on grand-challenge website, together with an automatic evaluation platform.


Assuntos
Benchmarking , Neoplasias da Próstata , Masculino , Humanos , Linfócitos , Mama , China
2.
Med Image Anal ; 91: 102997, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866169

RESUMO

Semantic segmentation of various tissue and nuclei types in histology images is fundamental to many downstream tasks in the area of computational pathology (CPath). In recent years, Deep Learning (DL) methods have been shown to perform well on segmentation tasks but DL methods generally require a large amount of pixel-wise annotated data. Pixel-wise annotation sometimes requires expert's knowledge and time which is laborious and costly to obtain. In this paper, we present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge by exploiting a large amount of unlabelled data for model training thus alleviating the need for a large annotated dataset. However, SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data. We propose an SSL method that learns robust features from both labelled and unlabelled images by enforcing consistency against varying contexts and feature perturbations. The proposed method incorporates context-aware consistency by contrasting pairs of overlapping images in a pixel-wise manner from changing contexts resulting in robust and context invariant features. We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence. Finally, entropy minimisation is employed to further boost the confidence of the final prediction maps from unlabelled data. We conduct an extensive set of experiments on two publicly available large datasets (BCSS and MoNuSeg) and show superior performance compared to the state-of-the-art methods.


Assuntos
Núcleo Celular , Semântica , Humanos , Entropia , Técnicas Histológicas , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
3.
J Pathol ; 260(4): 431-442, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37294162

RESUMO

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability. In this work, we propose a deep learning approach for the development of prognostic models for malignant transformation and their association with clinical outcomes in histology whole slide images (WSIs) of OED tissue sections. We train a weakly supervised method on OED cases (n = 137) with malignant transformation (n = 50) and mean malignant transformation time of 6.51 years (±5.35 SD). Stratified five-fold cross-validation achieved an average area under the receiver-operator characteristic curve (AUROC) of 0.78 for predicting malignant transformation in OED. Hotspot analysis revealed various features of nuclei in the epithelium and peri-epithelial tissue to be significant prognostic factors for malignant transformation, including the count of peri-epithelial lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05), and basal layer NC (p < 0.05). Progression-free survival (PFS) using the epithelial layer NC (p < 0.05, C-index = 0.73), basal layer NC (p < 0.05, C-index = 0.70), and PELs count (p < 0.05, C-index = 0.73) all showed association of these features with a high risk of malignant transformation in our univariate analysis. Our work shows the application of deep learning for the prognostication and prediction of PFS of OED for the first time and offers potential to aid patient management. Further evaluation and testing on multi-centre data is required for validation and translation to clinical practice. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Lesões Pré-Cancerosas , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Biomarcadores Tumorais/análise , Hiperplasia/patologia , Lesões Pré-Cancerosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos/patologia , Neoplasias de Cabeça e Pescoço/patologia
4.
Commun Med (Lond) ; 2: 120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168445

RESUMO

Background: Computational pathology has seen rapid growth in recent years, driven by advanced deep-learning algorithms. Due to the sheer size and complexity of multi-gigapixel whole-slide images, to the best of our knowledge, there is no open-source software library providing a generic end-to-end API for pathology image analysis using best practices. Most researchers have designed custom pipelines from the bottom up, restricting the development of advanced algorithms to specialist users. To help overcome this bottleneck, we present TIAToolbox, a Python toolbox designed to make computational pathology accessible to computational, biomedical, and clinical researchers. Methods: By creating modular and configurable components, we enable the implementation of computational pathology algorithms in a way that is easy to use, flexible and extensible. We consider common sub-tasks including reading whole slide image data, patch extraction, stain normalization and augmentation, model inference, and visualization. For each of these steps, we provide a user-friendly application programming interface for commonly used methods and models. Results: We demonstrate the use of the interface to construct a full computational pathology deep-learning pipeline. We show, with the help of examples, how state-of-the-art deep-learning algorithms can be reimplemented in a streamlined manner using our library with minimal effort. Conclusions: We provide a usable and adaptable library with efficient, cutting-edge, and unit-tested tools for data loading, pre-processing, model inference, post-processing, and visualization. This enables a range of users to easily build upon recent deep-learning developments in the computational pathology literature.

5.
Med Image Anal ; 80: 102485, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679692

RESUMO

Examination of pathological images is the golden standard for diagnosing and screening many kinds of cancers. Multiple datasets, benchmarks, and challenges have been released in recent years, resulting in significant improvements in computer-aided diagnosis (CAD) of related diseases. However, few existing works focus on the digestive system. We released two well-annotated benchmark datasets and organized challenges for the digestive-system pathological cell detection and tissue segmentation, in conjunction with the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). This paper first introduces the two released datasets, i.e., signet ring cell detection and colonoscopy tissue segmentation, with the descriptions of data collection, annotation, and potential uses. We also report the set-up, evaluation metrics, and top-performing methods and results of two challenge tasks for cell detection and tissue segmentation. In particular, the challenge received 234 effective submissions from 32 participating teams, where top-performing teams developed advancing approaches and tools for the CAD of digestive pathology. To the best of our knowledge, these are the first released publicly available datasets with corresponding challenges for the digestive-system pathological detection and segmentation. The related datasets and results provide new opportunities for the research and application of digestive pathology.


Assuntos
Benchmarking , Diagnóstico por Computador , Colonoscopia , Humanos , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...