Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(12)2022 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-36560764

RESUMO

The clinical application of detecting COVID-19 factors is a challenging task. The existing named entity recognition models are usually trained on a limited set of named entities. Besides clinical, the non-clinical factors, such as social determinant of health (SDoH), are also important to study the infectious disease. In this paper, we propose a generalizable machine learning approach that improves on previous efforts by recognizing a large number of clinical risk factors and SDoH. The novelty of the proposed method lies in the subtle combination of a number of deep neural networks, including the BiLSTM-CNN-CRF method and a transformer-based embedding layer. Experimental results on a cohort of COVID-19 data prepared from PubMed articles show the superiority of the proposed approach. When compared to other methods, the proposed approach achieves a performance gain of about 1-5% in terms of macro- and micro-average F1 scores. Clinical practitioners and researchers can use this approach to obtain accurate information regarding clinical risks and SDoH factors, and use this pipeline as a tool to end the pandemic or to prepare for future pandemics.


Assuntos
COVID-19 , Processamento de Linguagem Natural , Humanos , COVID-19/diagnóstico , Redes Neurais de Computação , Aprendizado de Máquina , Registros Eletrônicos de Saúde
2.
PLOS Digit Health ; 1(12): e0000152, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36812589

RESUMO

BACKGROUND: Despite significant advancements in biomedical named entity recognition methods, the clinical application of these systems continues to face many challenges: (1) most of the methods are trained on a limited set of clinical entities; (2) these methods are heavily reliant on a large amount of data for both pre-training and prediction, making their use in production impractical; (3) they do not consider non-clinical entities, which are also related to patient's health, such as social, economic or demographic factors. METHODS: In this paper, we develop Bio-Epidemiology-NER (https://pypi.org/project/Bio-Epidemiology-NER/) an open-source Python package for detecting biomedical named entities from the text. This approach is based on a Transformer-based system and trained on a dataset that is annotated with many named entities (medical, clinical, biomedical, and epidemiological). This approach improves on previous efforts in three ways: (1) it recognizes many clinical entity types, such as medical risk factors, vital signs, drugs, and biological functions; (2) it is easily configurable, reusable, and can scale up for training and inference; (3) it also considers non-clinical factors (age and gender, race and social history and so) that influence health outcomes. At a high level, it consists of the phases: pre-processing, data parsing, named entity recognition, and named entity enhancement. RESULTS: Experimental results show that our pipeline outperforms other methods on three benchmark datasets with macro-and micro average F1 scores around 90 percent and above. CONCLUSION: This package is made publicly available for researchers, doctors, clinicians, and anyone to extract biomedical named entities from unstructured biomedical texts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...