Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1255921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029198

RESUMO

Introduction: Heavy metals such as iron, copper, manganese, cobalt, silver, zinc, nickel, and arsenic have accumulated in soils for a long time due to the dumping of industrial waste and sewage. Various techniques have been adapted to overcome metal toxicity in agricultural land but utilizing a biological application using potential microorganisms in heavy metals contaminated soil may be a successful approach to decontaminate heavy metals soil. Therefore, the current study aimed to isolate endophytic bacteria from a medicinal plant (Viburnum grandiflorum) and to investigate the growth-promoting and heavy metal detoxification potential of the isolated endophytic bacteria Agrococus tereus (GenBank accession number MW 979614) under nickel and zinc contamination. Methods: Zinc sulfate and nickel sulfate solutions were prepared at the rate of 100 mg/kg and 50 mg/kg in sterilized distilled water. The experiment was conducted using a completely random design (CRD) with three replicates for each treatment. Results and Discussion: Inoculation of seeds with A. tereus significantly increased the plant growth, nutrient uptake, and defense system. Treatment T4 (inoculated seeds), T5 (inoculated seeds + Zn100 mg/kg), and T6 (inoculated seeds + Ni 100 mg/kg) were effective, but T5 (inoculated seeds + Zn100 mg/kg) was the most pronounced and increased shoot length, root length, leaf width, plant height, fresh weight, moisture content, and proline by 49%, 38%, 89%, 31%, 113%, and 146%, respectively. Moreover the antioxidant enzymes peroxidase and super oxidase dismutase were accelerated by 211 and 68% in contaminated soil when plants were inoculated by A. tereus respectively. Similarly the inoculation of A. tereus also enhanced maize plants' absorption of Cu, Mn, Ni, Na, Cr, Fe, Ca, Mg, and K significantly. Results of the findings concluded that 100 mg/kg of Zn and Ni were toxic to maize growth, but seed inoculation with A. tereus helped the plants significantly in reducing zinc and nickel stress. The A. tereus strain may be employed as a potential strain for the detoxification of heavy metals.

2.
Sci Rep ; 11(1): 17196, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433897

RESUMO

Heavy metals contaminate the soil that alters the properties of soil and negatively affect plants growth. Using microorganism and plant can remove these pollutants from soil. The present investigation was designed to evaluate the induced effect of Bacillus pumilus on maize plant in Cadmium (Cd) contaminated soil. Three different concentrations of Cd (i.e. 0.25, 0.50 and 0.75 mg kg-1) were applied in soil under which maize plants were grown. The germination percentage, shoot length, leaf length, number of leaves, root length, fresh weight and nutrient uptake by maize plant were determined. The experiment was conducted by using complete randomized design (CRD) with three replicates. The result indicated that germination percentage, Shoot length, leaf length, root length, number of leaves, and plant fresh weight were reduced by 37, 39, 39, 32 and 59% respectively at 0.75 mg kg-1 of CdSO4 concentration but when maize seeds inoculated with Bacillus pumilus significantly increased the germination percentage, shoot length, leaf length, number of leaves, plant fresh weight at different concentrations of CdSO4. Moreover, the plant protein were significantly increased by 60% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed) and Peroxidase dismutase (POD) was also significantly higher by 346% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed), however, the Superoxide dismutase (SOD) was significantly higher in T5 (0.75 mg kg-1 of CdSO4 + uninoculated seed) and was 769% higher as compared to control. The Cd contents in Bacillus pumilus inoculated maize roots and shoots were decreased. The present investigations indicated that the inoculation of maize plant with Bacillus pumilus can help maize plants to withstand Cd stress but higher concentration of Cd can harm the plant. The Bacillus pumilus has good potential to remediate Cd from soil, and also have potential to reduce the phyto availability and toxicity of Cd.


Assuntos
Bacillus pumilus/metabolismo , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Bacillus pumilus/patogenicidade , Biodegradação Ambiental , Cádmio/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/microbiologia , Poluentes do Solo/metabolismo , Estresse Fisiológico , Zea mays/metabolismo , Zea mays/microbiologia
3.
Arch Microbiol ; 195(9): 647-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23896976

RESUMO

The objective of the present study was to isolate and characterize nodulating bacteria associated with wild legumes. For this purpose, we recovered twenty isolates from root nodules of five wild legume species: Melilotus alles, Melilotus officinalis, Trifolium pratense, Trifolium repens and Medicago sp. Most of the isolates were morphologically analogous with only few exceptions in colony shape, appearance and incubation time. All isolates were Gram negative except T.P2-4. Random amplification of polymorphic DNA showed genetic variation among isolates. The 16S rRNA sequence analysis revealed these isolates as Rhizobium, Sinorhizobium and Paenibacillus. Each of these was also screened for nod D and nod F genes with marked variation at these loci; however, the nucleotide sequence analysis confirmed the presence of nod genes. The assignment of strains to their hosts revealed a unique symbiotic association of Paenibacillus sp. nodulating T .pratense which is being reported here for the first time.


Assuntos
Fabaceae/microbiologia , Paenibacillus/isolamento & purificação , Rhizobium/isolamento & purificação , Sinorhizobium/isolamento & purificação , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Fabaceae/fisiologia , Variação Genética , Paenibacillus/classificação , Paenibacillus/genética , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Sinorhizobium/classificação , Sinorhizobium/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...