Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(603)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290058

RESUMO

The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Endocitose , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
2.
ACS Med Chem Lett ; 8(12): 1304-1308, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29259752

RESUMO

With ∼429,000 deaths in 2016, malaria remains a major infectious disease where the need to treat the fever symptoms, but also to provide relevant post-treatment prophylaxis, is of major importance. An azepanylcarbazole amino alcohol is disclosed with a long- and fast-acting in vivo antiplasmodial efficacy and meets numerous attributes of a desired post-treatment chemoprophylactic antimalarial agent. The synthesis, the parasitological characterization, and the animal pharmacokinetics and pharmacodynamics of this compound are presented along with a proposed target.

3.
J Med Chem ; 59(21): 9890-9905, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27748596

RESUMO

Introduction of water-solubilizing groups on the 5-phenyl ring of a 2-aminopyrazine series led to the identification of highly potent compounds against the blood life-cycle stage of the human malaria parasite Plasmodium falciparum. Several compounds displayed high in vivo efficacy in two different mouse models for malaria, P. berghei-infected mice and P. falciparum-infected NOD-scid IL-2Rγnull mice. One of the frontrunners, compound 3, was identified to also have good pharmacokinetics and additionally very potent activity against the liver and gametocyte parasite life-cycle stages.


Assuntos
Antimaláricos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Doenças Parasitárias em Animais/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Pirazinas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos SCID , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Doenças Parasitárias em Animais/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Pirazinas/química , Pirazinas/metabolismo , Solubilidade , Relação Estrutura-Atividade , Água/química
4.
J Med Chem ; 58(21): 8713-22, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26502160

RESUMO

Toward improving pharmacokinetics, in vivo efficacy, and selectivity over hERG, structure-activity relationship studies around the central core of antimalarial imidazopyridazines were conducted. This study led to the identification of potent pyrazolopyridines, which showed good in vivo efficacy and pharmacokinetics profiles. The lead compounds also proved to be very potent in the parasite liver and gametocyte stages, which makes them of high interest.


Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Pirazóis/química , Pirazóis/uso terapêutico , Piridinas/química , Piridinas/uso terapêutico , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Fígado/parasitologia , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Pirazóis/farmacocinética , Pirazóis/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Relação Estrutura-Atividade
5.
Antimicrob Agents Chemother ; 59(2): 1110-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487796

RESUMO

Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Antimaláricos/química , Resistência a Medicamentos/fisiologia , Testes de Sensibilidade Parasitária
6.
Malar J ; 13: 190, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24886460

RESUMO

BACKGROUND: In view of the need to continuously feed the pipeline with new anti-malarial agents adapted to differentiated and more stringent target product profiles (e.g., new modes of action, transmission-blocking activity or long-duration chemo-protection), a chemical library consisting of more than 250,000 compounds has been evaluated in a blood-stage Plasmodium falciparum growth inhibition assay and further assessed for chemical diversity and novelty. METHODS: The selection cascade used for the triaging of hits from the chemical library started with a robust three-step in vitro assay followed by an in silico analysis of the resulting confirmed hits. Upon reaching the predefined requirements for selectivity and potency, the set of hits was subjected to computational analysis to assess chemical properties and diversity. Furthermore, known marketed anti-malarial drugs were co-clustered acting as 'signposts' in the chemical space defined by the hits. Then, in cerebro evaluation of the chemical structures was performed to identify scaffolds that currently are or have been the focus of anti-malarial medicinal chemistry programmes. Next, prioritization according to relaxed physicochemical parameters took place, along with the search for structural analogues. Ultimately, synthesis of novel chemotypes with desired properties was performed and the resulting compounds were subsequently retested in a P. falciparum growth inhibition assay. RESULTS: This screening campaign led to a 1.25% primary hit rate, which decreased to 0.77% upon confirmatory repeat screening. With the predefined potency (EC50 < 1 µM) and selectivity (SI > 10) criteria, 178 compounds progressed to the next steps where chemical diversity, physicochemical properties and novelty assessment were taken into account. This resulted in the selection of 15 distinct chemical series. CONCLUSION: A selection cascade was applied to prioritize hits resulting from the screening of a medium-sized chemical library against blood-stage P. falciparum. Emphasis was placed on chemical novelty whereby computational clustering, data mining of known anti-malarial chemotypes and the application of relaxed physicochemical filters, were key to the process. This led to the selection of 15 chemical series from which ten confirmed their activity when newly synthesized sample were tested.


Assuntos
Antimaláricos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Algoritmos , Antimaláricos/química , Antimaláricos/farmacologia , Humanos
7.
J Med Chem ; 57(3): 1014-22, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24446664

RESUMO

A novel series of 2,4-diaminothienopyrimidines with potential as antimalarials was identified from whole-cell high-throughput screening of a SoftFocus ion channel library. Synthesis and structure-activity relationship studies identified compounds with potent antiplasmodial activity and low in vitro cytotoxicity. Several of these analogues exhibited in vivo activity in the Plasmodium berghei mouse model when administered orally. However, inhibition of the hERG potassium channel was identified as a liability for this series.


Assuntos
Antimaláricos/síntese química , Pirimidinas/síntese química , Tiofenos/síntese química , Administração Oral , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Linhagem Celular , Bases de Dados de Compostos Químicos , Resistência a Múltiplos Medicamentos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Plasmodium berghei , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia
8.
J Med Chem ; 56(21): 8860-71, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24099149

RESUMO

Replacement of the pyridine core of antimalarial 3,5-diaryl-2-aminopyridines led to the identification of a novel series of pyrazine analogues with potent oral antimalarial activity. However, other changes to the pyridine core and replacement or substitution of the 2-amino group led to loss of antimalarial activity. The 3,5-diaryl-2-aminopyrazine series showed impressive in vitro antiplasmodial activity against the K1 (multidrug resistant) and NF54 (sensitive) strains of Plasmodium falciparum in the nanomolar IC50 range of 6-94 nM while also demonstrating good in vitro metabolic stability in human liver microsomes. In the Plasmodium berghei mouse model, this series generally exhibited good efficacy at low oral doses. One of the frontrunner compounds, 4, displayed potent in vitro antiplasmodial activity with IC50 values of 8.4 and 10 nM against the K1 and NF54 strains, respectively. When evaluated in P. berghei -infected mice, compound 4 was completely curative at an oral dose of 4 × 10 mg/kg.


Assuntos
Aminopiridinas/farmacologia , Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Administração Oral , Aminopiridinas/administração & dosagem , Aminopiridinas/química , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Células CHO , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ratos , Relação Estrutura-Atividade
9.
J Med Chem ; 55(24): 11022-30, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23189922

RESUMO

In an effort to address potential cardiotoxicity liabilities identified with earlier frontrunner compounds, a number of new 3,5-diaryl-2-aminopyridine derivatives were synthesized. Several compounds exhibited potent antiplasmodial activity against both the multidrug resistant (K1) and sensitive (NF54) strains in the low nanomolar range. Some compounds displayed a significant reduction in potency in the hERG channel inhibition assay compared to previously reported frontrunner analogues. Several of these new analogues demonstrated promising in vivo efficacy in the Plasmodium berghei mouse model and will be further evaluated as potential clinical candidates. The SAR for in vitro antiplasmodial and hERG activity was delineated.


Assuntos
Aminopiridinas/síntese química , Antimaláricos/síntese química , Administração Oral , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Humanos , Malária/tratamento farmacológico , Camundongos , Microssomos Hepáticos/metabolismo , Plasmodium berghei , Plasmodium falciparum/efeitos dos fármacos , Solubilidade , Relação Estrutura-Atividade
10.
J Med Chem ; 55(7): 3479-87, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22390538

RESUMO

A novel class of orally active antimalarial 3,5-diaryl-2-aminopyridines has been identified from phenotypic whole cell high-throughput screening of a commercially available SoftFocus kinase library. The compounds were evaluated in vitro for their antiplasmodial activity against K1 (chloroquine and drug-resistant strain) and NF54 (chloroquine-susceptible strain) as well as for their cytotoxicity. Synthesis and structure-activity studies identified a number of promising compounds with selective antiplasmodial activity. One of these frontrunner compounds, 15, was equipotent across the two strains (K1 = 25.0 nM, NF54 = 28.0 nM) and superior to chloroquine in the K1 strain (chloroquine IC(50) K1 = 194.0 nM). Compound 15 completely cured Plasmodium berghei-infected mice with a single oral dose of 30 mg/kg. Dose-response studies generated ED(50) and ED(90) values of 0.83 and 1.74 mg/kg for 15 in the standard four-dose Peters test. Pharmacokinetic studies in the rat indicated that this compound has good oral bioavailability (51% at 20 mg/kg) and a reasonable half-life (t(1/2) ∼ 7-8 h).


Assuntos
Aminopiridinas/síntese química , Antimaláricos/síntese química , Administração Oral , Aminopiridinas/farmacocinética , Aminopiridinas/farmacologia , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Disponibilidade Biológica , Linhagem Celular , Cloroquina/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Resistência a Medicamentos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Feminino , Humanos , Isoenzimas/antagonistas & inibidores , Malária/tratamento farmacológico , Camundongos , Microssomos Hepáticos/metabolismo , Plasmodium berghei , Plasmodium falciparum/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
11.
Mol Cancer Ther ; 6(4): 1348-56, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17431113

RESUMO

Urokinase-type plasminogen activator (uPA), a highly restricted serine protease, plays an important role in the regulation of diverse physiologic and pathologic processes. Strong clinical and experimental evidence has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients. uPA has been considered as a promising molecular target for development of anticancer drugs. Here, we report the identification of several new uPA inhibitors using a high-throughput screen from a chemical library. From these uPA inhibitors, molecular modeling and docking studies identified 4-oxazolidinone as a novel lead pharmacophore. Optimization of the 4-oxazolidinone pharmacophore resulted in a series of structurally modified compounds with improved potency and selectivity. One of the 4-oxazolidinone analogues, UK122, showed the highest inhibition of uPA activity. The IC(50) of UK122 in a cell-free indirect uPA assay is 0.2 micromol/L. This compound also showed no or little inhibition of other serine proteases such as thrombin, trypsin, plasmin, and the tissue-type plasminogen activator, indicating its high specificity against uPA. Moreover, UK122 showed little cytotoxicity against CFPAC-1 cells (IC(50) >100 micromol/L) but significantly inhibited the migration and invasion of this pancreatic cancer cell line. Our data show that UK122 could potentially be developed as a new anticancer agent that prevents the invasion and metastasis of pancreatic cancer.


Assuntos
Inibidores Enzimáticos/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Invasividade Neoplásica
12.
Mol Cancer Ther ; 5(7): 1764-73, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16891462

RESUMO

Aurora A and Aurora B are potential targets for anticancer drug development due to their roles in tumorigenesis and disease progression. To identify small-molecule inhibitors of the Aurora kinases, we undertook a structure-based design approach that used three-dimensional structural models of the Aurora A kinase and molecular docking simulations of chemical entities. Based on these computational methods, a new generation of inhibitors derived from quinazoline and pyrimidine-based tricyclic scaffolds were synthesized and evaluated for Aurora A kinase inhibitory activity, which led to the identification of 4-(6,7-dimethoxy-9H-1,3,9-triaza-fluoren-4-yl)-piperazine-1-carbothioic acid [4-(pyrimidin-2-ylsulfamoyl)-phenyl]-amide. The lead compound showed selectivity for the Aurora kinases when it was evaluated against a panel of diverse kinases. Additionally, the compound was evaluated in cell-based assays, showing a dose-dependent decrease in phospho-histone H3 levels and an arrest of the cell cycle in the G(2)-M fraction. Although biological effects were observed only at relatively high concentrations, this chemical series provides an excellent starting point for drug optimization and further development.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Chumbo/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sulfonamidas/farmacologia , Tionas/farmacologia , Antineoplásicos/química , Aurora Quinase B , Aurora Quinases , Ensaios de Seleção de Medicamentos Antitumorais , Histonas/metabolismo , Humanos , Chumbo/química , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Relação Estrutura-Atividade , Sulfonamidas/química , Tionas/química
13.
J Am Chem Soc ; 127(26): 9439-47, 2005 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-15984871

RESUMO

The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K(+)). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K(+) or Na(+). In contrast, in the presence of K(+), Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.


Assuntos
DNA/metabolismo , Oxazóis/metabolismo , Porfirinas/metabolismo , Compostos de Selênio/metabolismo , Telômero/metabolismo , Sítios de Ligação , Dicroísmo Circular , DNA/química , Quadruplex G , Humanos , Ligantes , Estrutura Molecular , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Oxazóis/química , Reação em Cadeia da Polimerase , Porfirinas/química , Potássio/farmacologia , Compostos de Selênio/química , Sódio/farmacologia , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Telômero/química
14.
J Am Chem Soc ; 127(9): 2944-59, 2005 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15740131

RESUMO

Cationic porphyrins are known to bind to and stabilize different types of G-quadruplexes. Recent studies have shown the biological relevance of the intramolecular parallel G-quadruplex as a transcriptional silencer in the c-MYC promoter. TMPyP4 also binds to this G-quadruplex and most likely converts it to a mixed parallel/antiparallel G-quadruplex with two external lateral loops and one internal propeller loop, suppressing c-MYC transcriptional activation. To achieve therapeutic selectivity by targeting G-quadruplexes, it is necessary to synthesize drugs that can differentiate among the different types of G-quadruplexes. We have designed and synthesized a core-modified expanded porphyrin analogue, 5,10,15,20-[tetra(N-methyl-3-pyridyl)]-26,28-diselenasapphyrin chloride (Se2SAP). Se2SAP converts the parallel c-MYC G-quadruplex into a mixed parallel/antiparallel G-quadruplex with one external lateral loop and two internal propeller loops, resulting in strong and selective binding to this G-quadruplex. A Taq polymerase stop assay was used to evaluate the binding of TMPyP4 and Se2SAP to G-quadruplex DNA. Compared to TMPyP4, Se2SAP shows a greater selectivity for and a 40-fold increase in stabilization of the single lateral-loop hybrid. Surface plasmon resonance and competition experiments with duplex DNA and other G-quadruplexes further confirmed the selectivity of Se2SAP for the c-MYC G-quadruplex. Significantly, Se2SAP was found to be less photoactive and noncytotoxic in comparison to TMPyP4. From this study, we have identified an expanded porphyrin that selectively binds with the c-MYC G-quadruplex in the presence of duplex DNA and other G-quadruplexes.


Assuntos
DNA/metabolismo , Genes myc , Porfirinas/síntese química , Compostos de Selênio/síntese química , Ligação Competitiva , DNA/química , DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Quadruplex G , Guanina/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Oxazóis/química , Oxazóis/metabolismo , Oxazóis/farmacologia , Porfirinas/química , Porfirinas/metabolismo , Porfirinas/farmacologia , Regiões Promotoras Genéticas , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Compostos de Selênio/farmacologia , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Telômero/química , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...