Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069162

RESUMO

Recent investigations have highlighted the potential utility of the selective antagonist of the NMDA receptor GluN2B subunit for addressing major depressive disorders. Our previous study showed that the systemic administration of the antagonist of the GluN2B subunit of the NMDA receptor, the compound CP-101,606, affected liver cytochrome P450 expression and activity. To discern between the central and peripheral mechanisms of enzyme regulation, our current study aimed to explore whether the intracerebral administration of CP-101,606 could impact cytochrome P450. The injection of CP-101,606 to brain lateral ventricles (6, 15, or 30 µg/brain) exerted dose-dependent effects on liver cytochrome P450 enzymes and hypothalamic or pituitary hormones. The lowest dose led to an increase in the activity, protein, and mRNA level of CYP2C11 compared to the control. The activities of CYP2A, CYP2B, CYP2C11, CYP2C6, CYP2D, and protein levels of CYP2B, CYP2C11 were enhanced compared to the highest dose. Moreover, CP-101,606 increased the CYP1A protein level coupled with elevated CYP1A1 and CYP1A2 mRNA levels, but not activity. The antagonist decreased the pituitary somatostatin level and increased the serum growth hormone concentration after the lowest dose, while independently decreasing the serum corticosterone concentration of the dose. The findings presented here unveil a novel physiological regulatory mechanism whereby the brain glutamatergic system, via the NMDA receptor, influences liver cytochrome P450. This regulatory process appears to involve the endocrine system. These results may have practical applications in predicting alterations in cytochrome P450 activity and endogenous metabolism, and potential metabolic drug-drug interactions elicited by drugs that cross the blood-brain barrier and affect NMDA receptors.


Assuntos
Transtorno Depressivo Maior , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Ratos Wistar , Transtorno Depressivo Maior/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Encéfalo/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Microssomos Hepáticos/metabolismo
2.
Pharmacol Rep ; 75(6): 1522-1532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848703

RESUMO

BACKGROUND: Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system. The present study aimed to investigate changes in the function of the main liver drug-metabolizing CYP enzymes as a result of serotonin depletion in the brain of aging rats, caused by knockout of brain tryptophan hydroxylase gene (TPH2-KO). METHODS: The hepatic CYP mRNA (qRT-PCR), protein level (Western blotting) and activity (HPLC), and serum hormone levels (ELISA) were measured in Dark Agouti wild-type (WT) male rats (mature 3.5-month-old and senescent 21-month-old) and in TPH2-KO senescent animals. RESULTS: The expression/activity of the studied CYPs decreased with age in the liver of wild-type rats. The deprivation of serotonin in the brain of aging males decreased the mRNA level of most of the studied CYPs (CYP1A/2A/2B/3A), and lowered the protein level of CYP2C11 and CYP3A. In contrast, the activities of CYP2C11, CYP3A and CYP2C6 were increased. The expression of cytochrome b5 decreased in aging rats, but increased in TPH2-deficient senescent animals. The serum concentration of growth hormone declined in the aged and further dropped down in TPH2-deficient senescent rats. CONCLUSIONS: Rat liver cytochrome P450 functions deteriorate with age, which may impair drug metabolism. The TPH2 knockout, which deprives brain serotonin, affects cytochrome P450 expression and activity differently in mature and senescent male rats.


Assuntos
Citocromo P-450 CYP3A , Serotonina , Ratos , Masculino , Animais , Serotonina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ratos Wistar , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado , Encéfalo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Envelhecimento , Microssomos Hepáticos/metabolismo
3.
Pharmacol Rep ; 74(5): 1107-1114, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018449

RESUMO

BACKGROUND: Our earlier studies have shown that the brain noradrenergic system regulates cytochrome P450 (CYP) in rat liver via neuroendocrine mechanism. In the present work, a comparative study on the effect of intraperitoneal administration of the noradrenergic neurotoxin DSP-4 and the knockout of noradrenaline transporter (NET-KO) on the CYP3A in the liver of male and female mice was performed. METHODS: The experiments were conducted on C57BL/6J WT and NET-/- male/female mice. DSP-4 was injected intraperitoneally as a single dose (50 mg/kg ip.) to WT mice. The activity of CYP3A was measured as the rate of 6ß-hydroxylation of testosterone in liver microsomes. The CYP3A protein level was estimated by Western blotting. RESULTS: DSP-4 evoked a selective decrease in the noradrenaline level in the brain of male and female mice. At the same time, DSP-4 reduced the CYP3A activity in males, but not in females. The level of CYP3A protein was not changed. The NET knockout did not affect the CYP3A activity/protein in both sexes. CONCLUSIONS: The results with DSP-4 treated mice showed sex-dependent differences in the regulation of liver CYP3A by the brain noradrenergic system (with only males being responsive), and revealed that the NET knockout did not affect CYP3A in both sexes. Further studies into the hypothalamic-pituitary-gonadal hormones in DSP-4 treated mice may explain sex-specific differences in CYP3A regulation, whereas investigation of monoaminergic receptor sensitivity in the hypothalamic/pituitary areas of NET-/- mice will allow for understanding a lack of changes in the CYP3A activity in the NET-KO animals.


Assuntos
Citocromo P-450 CYP3A , Neurotoxinas , Ratos , Animais , Camundongos , Feminino , Masculino , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Fígado , Testosterona/metabolismo
4.
Pharmacol Rep ; 73(1): 303-308, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32888176

RESUMO

BACKGROUND: Cytochrome P450 (CYP) enzymes are involved in the metabolism of many important endogenous substrates (steroids, melatonin), drugs and toxic xenobiotics. Their induction accelerates drug metabolism and elimination. The present study aimed at examining the inducing abilities of two antipsychotic drugs levomepromazine and clozapine for the main CYPs. METHODS: The experiments were performed using cryopreserved human hepatocytes. The hepatotoxicity of levomepromazine and clozapine was assessed after exposure to the neuroleptics (LDH test). CYP activities were measured in the incubation medium using the CYP-specific reactions: caffeine 3-N-demethylation (CYP1A1/2), diclofenac 4'-hydroxylation (CYP2C9), perazine N-demethylation (CYP2C19) and testosterone 6ß-hydroxylation (CYP3A4). In parallel, CYP mRNA levels were measured in neuroleptic-treated hepatocytes. RESULTS: The results indicate that levomepromazine and clozapine induce the expression of main CYP enzyme CYP3A4 in human hepatocytes. Levomepromazine and clozapine at concentrations of 2.5 and 10 µM, respectively, caused a significant increase in the mRNA level and activity of CYP3A4. Both neuroleptics did not produce any changes in CYP1A1/2, CYP2C9 and CYP2C19. CONCLUSION: Levomepromazine and clozapine induce CYP3A4 in human hepatocytes in vitro. Further in vivo studies are advisable to confirm the CYP3A4 induction by levomepromazine and clozapine in the liver, and to assess the effect of these drugs on their own metabolism and on the biotransformation of other co-administered drugs which are the CYP3A4 substrates.


Assuntos
Antipsicóticos/farmacologia , Clozapina/farmacologia , Citocromo P-450 CYP3A/biossíntese , Indução Enzimática/efeitos dos fármacos , Metotrimeprazina/farmacologia , Células Cultivadas , Inibidores das Enzimas do Citocromo P-450 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado , RNA Mensageiro/biossíntese
5.
Pharmacol Rep ; 72(3): 612-621, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32219694

RESUMO

BACKGROUND: Inhibition of cytochrome P450 (CYP) enzymes is the most common cause of harmful drug-drug interactions. The present study aimed at examining the inhibitory effect of the novel antipsychotic drug asenapine on the main CYP enzymes in human liver. METHODS: The experiments were performed in vitro using pooled human liver microsomes and the human cDNA-expressed CYP enzymes: CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (Supersomes). Activities of CYP enzymes were determined using the CYP-specific reactions: caffeine 3-N-demethylation (CYP1A2), diclofenac 4'-hydroxylation (CYP2C9), perazine N-demethylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6), and testosterone 6ß-hydroxylation (CYP3A4). The rates of the CYP-specific reactions were assessed in the absence and presence of asenapine using HPLC. RESULTS: The obtained results showed that both in human liver microsomes and Supersomes asenapine potently and to a similar degree inhibited the activity of CYP1A2 via a mixed mechanism (Ki = 3.2 µM in liver microsomes and Supersomes) and CYP2D6 via a competitive mechanism (Ki = 1.75 and 1.89 µM in microsomes and Supersomes, respectively). Moreover, asenapine attenuated the CYP3A4 activity via a non-competitive mechanism (Ki = 31.3 and 27.3 µM in microsomes and Supersomes, respectively). In contrast, asenapine did not affect the activity of CYP2C9 or CYP2C19. CONCLUSION: The potent inhibition of CYP1A2 and CYP2D6 by asenapine, demonstrated in vitro, will most probably be observed also in vivo, since the calculated Ki values are close to the presumed concentration range for asenapine in the liver in vivo. Therefore, pharmacokinetic interactions involving asenapine and CYP2D6 or CYP1A2 substrates are likely to occur during their co-administration to patients.


Assuntos
Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Dibenzocicloeptenos , Interações Medicamentosas , Humanos , Microssomos Hepáticos
6.
ACS Med Chem Lett ; 7(6): 618-22, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326337

RESUMO

A series of N1-azinylsulfonyl-3-(1,2,3,6,tetrahyrdopyridin-4-yl)-1H-indole derivatives was designed to obtain highly potent 5-HT6 receptor ligands. The study allowed for the identification of 25 (4-{[5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indol-1-yl]sulfonyl}isoquinoline), a potent and selective 5-HT6 receptor antagonist. The selected compound, was evaluated in vivo in a novel object recognition (NOR) and forced swim (FST) tests in rats, demonstrating distinct pro-cognitive and antidepressant-like properties (MED = 1 mg/kg and 0.1 mg/kg, i.p., respectively). Compound SB-742457, used as comparator, reversed memory deficits in NOR task in similar doses, while in FST it was active in 10-30-fold higher dose (3 mg/kg). In contrast to SB-742457, which was active in Vogel test (MED = 3 mg/kg), compound 25 displayed no anxiolytic activity.

7.
Pharmacol Rep ; 67(6): 1178-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481538

RESUMO

BACKGROUND: Inhibition of cytochrome P450 (CYP) isoenzymes is the most common cause of harmful drug-drug interactions. The present study was aimed at examining the inhibitory effect of the phenothiazine neuroleptic levomepromazine on main CYP isoenzymes in human liver. METHODS: The experiment was performed in vitro using the human cDNA-expressed CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 (Supersomes). CYP isoenzyme activities were determined using the CYP-specific reactions: caffeine 3-N-demethylation (CYP1A2), diclofenac 4'-hydroxylation (CYP2C9), perazine N-demethylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6) and testosterone 6ß-hydroxylation (CYP3A4). The rates of the CYP-specific reactions were assessed in the absence and presence of levomepromazine (1-50 µM). The concentrations of CYP-specific substrates and their metabolites formed by CYP isoenzymes were measured by HPLC with UV or fluorimetric detection. RESULTS: Levomepromazine potently inhibited CYP2D6 (K(i) = 6 µM) in a competitive manner. Moreover, the neuroleptic moderately diminished the activity of CYP1A2 (K(i) = 47 µM) and CYP3A4 (K(i) = 34 µM) via a mixed mechanism. On the other hand, levomepromazine did not affect the activities of CYP2C9 and CYP2C19. CONCLUSION: The inhibition of CYP1A2, CYP2D6 and CYP3A4 by levomepromazine, demonstrated in vitro in the present study, should also be observed in vivo (especially the CYP2D6 inhibition by levomepromazine), since the calculated K(i) values are below or close to the presumed concentration range for levomepromazine in the liver in vivo. Therefore pharmacokinetic interactions involving levomepromazine and CYP2D6, CYP1A2 or CYP3A4 substrates are likely to occur in patients during co-administration of the above-mentioned substrates/drugs.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Metotrimeprazina/farmacologia , Antipsicóticos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Isoenzimas/antagonistas & inibidores , Cinética , Fígado/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...