Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 105(4): e4257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426609

RESUMO

Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia-like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia-like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.


Assuntos
Mudança Climática , Refúgio de Vida Selvagem , Densidade Demográfica , Temperatura , Ecossistema
2.
Am Nat ; 202(3): 260-275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606941

RESUMO

AbstractAlternative stable ecosystem states are possible under the same environmental conditions in models of two or three interacting species and an array of feedback loops. However, multispecies food webs might weaken the feedbacks loops that can create alternative stable states. To test how this potential depends on food web properties, we develop a many-species model where consumer Allee effects emerge from consumer-resource interactions. We evaluate the interactive effects of food web connectance, interspecific trait diversity, and two classes of feedbacks: specialized feedbacks, where consumption of individual resources declines at high resource abundance (e.g., from schooling or reaching size refugia), and aggregate feedbacks, where overall resource abundance reduces consumer recruitment (e.g., from resources enhancing competition or mortality experienced by recruits). We find that aggregate feedbacks maintain, and specialized feedbacks reduce, the potential for alternative states. Interspecific trait diversity decreases the prevalence of alternative stable states more for specialized than for aggregate feedbacks. Increasing food web connectance increases the potential for alternative stable states for aggregated feedbacks but decreases it for specialized feedbacks, where losing vulnerable consumers can cascade into food web collapses. Altogether, multispecies food webs can limit the set of processes that create alternative stable states and impede consumer recovery from disturbance.


Assuntos
Ecossistema , Cadeia Alimentar , Retroalimentação , Fenótipo
3.
Epidemics ; 44: 100697, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348378

RESUMO

Ivermectin (IVM)-treated birds provide the potential for targeted control of Culex mosquitoes to reduce West Nile virus (WNV) transmission. Ingestion of IVM increases mosquito mortality, which could reduce WNV transmission from birds to humans and in enzootic maintenance cycles affecting predominantly bird-feeding mosquitoes and from birds to humans. This strategy might also provide an alternative method for WNV control that is less hampered by insecticide resistance and the logistics of large-scale pesticide applications. Through a combination of field studies and modeling, we assessed the feasibility and impact of deploying IVM-treated birdfeed in residential neighborhoods to reduce WNV transmission. We first tracked 105 birds using radio telemetry and radio frequency identification to monitor their feeder usage and locations of nocturnal roosts in relation to five feeder sites in a neighborhood in Fort Collins, Colorado. Using these results, we then modified a compartmental model of WNV transmission to account for the impact of IVM on mosquito mortality and spatial movement of birds and mosquitoes on the neighborhood level. We found that, while the number of treated lots in a neighborhood strongly influenced the total transmission potential, the arrangement of treated lots in a neighborhood had little effect. Increasing the proportion of treated birds, regardless of the WNV competency status, resulted in a larger reduction in infection dynamics than only treating competent birds. Taken together, model results indicate that deployment of IVM-treated feeders could reduce local transmission throughout the WNV season, including reducing the enzootic transmission prior to the onset of human infections, with high spatial coverage and rates of IVM-induced mortality in mosquitoes. To improve predictions, more work is needed to refine estimates of daily mosquito movement in urban areas and rates of IVM-induced mortality. Our results can guide future field trials of this control strategy.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/veterinária , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Aves
4.
Ecol Appl ; 33(4): e2850, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942610

RESUMO

In restoration ecology, the Field of Dreams hypothesis posits that restoration efforts that create a suitable environment could lead to the eventual recovery of the remaining aspects of the ecosystem through natural processes. Natural processes following partial restoration has led to ecosystem recovery in both terrestrial and aquatic systems. However, understanding the efficacy of a "Field of Dreams" approach requires a comparison of different approaches to partial restoration in terms of spatial, temporal, and ecological scale with what would happen given more comprehensive restoration efforts. We explore the relative effect of partial restoration and ongoing recovery on restoration efficacy with a dynamical model based on temperate rocky reefs in Northern California. We analyze our model for both the ability and rate of bull kelp forest recovery under different restoration strategies. We compare the efficacy of a partial restoration approach with a more comprehensive restoration effort by exploring how kelp recovery likelihood and rate change with varying intensities of urchin removal and kelp outplanting over different time periods and spatial scales. We find that, in the case of bull kelp forests, setting more favorable initial conditions for kelp recovery by implementing both urchin harvesting and kelp outplanting at the start of the restoration project has a bigger impact on the kelp recovery rate than applying restoration efforts through a longer period of time. Therefore, partial restoration efforts, in terms of spatial and temporal scale, can be significantly more effective when applied across multiple ecological scales in terms of both the capacity and rate for achieving the target outcomes.


Assuntos
Ecossistema , Kelp , Florestas
5.
Bull Math Biol ; 84(9): 102, 2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-35964274

RESUMO

During recent years, the study of long transients has been expanded in ecological theory to account for shifts in long-term behavior of ecological systems. These long transients may lead to regime shifts between alternative states that resemble the dynamics of alternative stable states for a prolonged period of time. One dynamic that potentially leads to long transients is the group defense of a resource in a consumer-resource interaction. Furthermore, time lags in the population caused by discrete reproductive pulses have the potential to produce long transients, either independently or in conjunction to the transients caused by the group defense. In this work, we analyze the potential for long transients in a model for a consumer-resource system in which the resource exhibits group defense and reproduces in discrete reproductive pulses. This system exhibits crawl-by transients near the extinction and carrying capacity states of resource, and a transcritical bifurcation, under which a ghost limit cycle appears. We estimate the transient time of our system from these transients using perturbation theory. This work advances an understanding of how systems shift between alternate states and their duration of staying in a given regime and what ecological dynamics may lead to long transients.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Ecossistema , Reprodução
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210380, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35757886

RESUMO

Many species are shifting their ranges to keep pace with climate change, but habitat fragmentation and limited dispersal could impede these range shifts. In the case of climate-vulnerable foundation species such as tropical reef corals and temperate forest trees, such limitations might put entire communities at risk of extinction. Restoring connectivity through corridors, stepping-stones or enhanced quality of existing patches could prevent the extinction of several species, but dispersal-limited species might not benefit if other species block their dispersal. Alternatively, managers might relocate vulnerable species between habitats through assisted migration, but this is generally a species-by-species approach. To evaluate the relative efficacy of these strategies, we simulated the climate-tracking of species in randomized competitive metacommunities with alternative management interventions. We found that corridors and assisted migration were the most effective strategies at reducing extinction. Assisted migration was especially effective at reducing the extinction likelihood for short-dispersing species, but it often required moving several species repeatedly. Assisted migration was more effective at reducing extinction in environments with higher stochasticity, and corridors were more effective at reducing extinction in environments with lower stochasticity. We discuss the application of these approaches to an array of systems ranging from tropical corals to temperate forests. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Animais , Mudança Climática , Florestas , Árvores
7.
Ecol Lett ; 24(9): 1917-1929, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218512

RESUMO

Ecosystem patterning can arise from environmental heterogeneity, biological feedbacks that produce multiple persistent ecological states, or their interaction. One source of feedbacks is density-dependent changes in behaviour that regulate species interactions. By fitting state-space models to large-scale (~500 km) surveys on temperate rocky reefs, we find that behavioural feedbacks best explain why kelp and urchin barrens form either reef-wide patches or local mosaics. Best-supported models in California include feedbacks where starvation intensifies grazing across entire reefs create reef-scale, alternatively stable kelp- and urchin-dominated states (32% of reefs). Best-fitting models in New Zealand include the feedback of urchins avoiding dense kelp stands that can increase abrasion and predation risk, which drives a transition from shallower urchin-dominated to deeper kelp-dominated zones, with patchiness at 3-8 m depths with intermediate wave stress. Connecting locally studied processes with region-wide data, we highlight how behaviour can explain community patterning and why some systems exhibit community-wide alternative stable states.


Assuntos
Ecossistema , Kelp , Animais , Cadeia Alimentar , Nova Zelândia , Ouriços-do-Mar
8.
Ecol Appl ; 31(6): e02367, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938605

RESUMO

Outcomes of management efforts to recover or restore populations of harvested species can be highly dependent on environmental and community context. Predator-prey interactions can alter recovery trajectories, and the timing of management actions within multi-trophic level harvest scenarios may influence the dynamics of recovery and lead to management trade-offs. Recent work using a generalist predator-prey model suggests that management promoting synchronized recovery of predators and prey leads to faster and less variable recovery trajectories than sequential recovery (predator or prey first). However, more complex communities may require different management actions to minimize recovery time and variability. Here, we use a tri-trophic level rocky reef community dynamics model with size-structure and fisheries at multiple trophic levels to investigate the importance of three ecological processes to recovery of fished communities: (1) size-structured predation, (2) non-consumptive effects of predators on prey behavior, and (3) varying levels of recruitment. We also test the effects of initiating recovery from community states associated with varying degrees of fishery-induced degradation and develop a simulation in which the basal resource (kelp) is harvested. In this system, a predator-first closure generally leads to the least volatile and quickest recovery, whether from a kelp forest, urchin barren, or intermediate community state. The benefits gained by selecting this strategy are magnified when recovering from the degraded community, the urchin barren, because initial conditions in the degraded state lead to lengthy recovery times. However, the shape of the size-structured predation relationship can strongly affect recovery volatility, where the differences between alternate management strategies are negated with size-independent predation. External recruitment reduces return times by bolstering the predatory lobster population. These results show that in a tightly linked tri-trophic level food web with top-down control, a predator-first fishery closure can be the most effective strategy to reduce volatility and shorten recovery, particularly when the system is starting from the degraded community state. Given the ubiquity of top predator loss across many ecosystems, we highlight the value of incorporating insights from community ecology into ecosystem management.


Assuntos
Kelp , Animais , Ecossistema , Pesqueiros , Cadeia Alimentar , Florestas , Comportamento Predatório
9.
Conserv Biol ; 35(6): 1809-1820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33769601

RESUMO

Assisted migration (AM) is the translocation of species beyond their historical range to locations that are expected to be more suitable under future climate change. However, a relocated population may fail to establish in its donor community if there is high uncertainty in decision-making, climate, and interactions with the recipient ecological community. To quantify the benefit to persistence and risk of establishment failure of AM under different management scenarios (e.g., choosing target species, proportion of population to relocate, and optimal location to relocate), we built a stochastic metacommunity model to simulate several species reproducing, dispersing, and competing on a temperature gradient as temperature increases over time. Without AM, the species were vulnerable to climate change when they had low population sizes, short dispersal, and strong poleward competition. When relocating species that exemplified these traits, AM increased the long-term persistence of the species most when relocating a fraction of the donor population, even if the remaining population was very small or rapidly declining. This suggests that leaving behind a fraction of the population could be a robust approach, allowing managers to repeat AM in case they move the species to the wrong place and at the wrong time, especially when it is difficult to identify a species' optimal climate. We found that AM most benefitted species with low dispersal ability and least benefited species with narrow thermal tolerances, for which AM increased extinction risk on average. Although relocation did not affect the persistence of nontarget species in our simple competitive model, researchers will need to consider a more complete set of community interactions to comprehensively understand invasion potential.


Identificación de Estrategias Sólidas para la Migración Asistida en una Metacomunidad Estocástica Competitiva Resumen La migración asistida es la translocación de especies más allá de su extensión histórica a localidades que se espera sean más adecuadas bajo el cambio climático futuro. Sin embargo, una población reubicada puede no establecerse en su comunidad donante si existe una mucha incertidumbre en cuanto a la toma de decisiones, el clima y las interacciones con la comunidad ecológica receptora. Para cuantificar el beneficio para la persistencia y el riesgo de fallas en el establecimiento de la migración asistida bajo diferentes escenarios de manejo (p. ej.: elección de especies objetivo, proporción de la población a reubicar y localidad óptima para la reubicación) construimos un modelo de metacomunidad estocástica para simular la reproducción, dispersión y competencia de varias especies a lo largo de un gradiente de temperatura conforme la temperatura incrementa con el tiempo. Sin la migración asistida, las especies presentaron vulnerabilidad ante el cambio climático cuando presentaron un tamaño poblacional menor, una dispersión reducida y una competencia fuerte hacia los extremos. Cuando se reubicó a especies con estas características, la migración asistida incrementó más la persistencia a largo plazo de las especies cuando se reubicó una fracción de la población donante, incluso si la población remanente era muy pequeña o se encontraba en una rápida declinación. Esto sugiere que dejar una fracción de la población podría ser una estrategia sólida que permite a los gestores repetir la migración asistida en caso de que muden a la especie al lugar equivocado en el momento equivocado, especialmente cuando es difícil identificar el clima óptimo de la especie. Descubrimos que la migración asistida benefició más a las especies con una baja habilidad de dispersión y tuvo menos beneficios para las especies con una tolerancia térmica reducida, para las que la migración asistida aumentó en promedio el riesgo de extinción. Aunque la reubicación no afectó la persistencia de las especies que no consideramos como objetivo en nuestro modelo competitivo simple, los investigadores necesitarán considerar un conjunto más completo de interacciones comunitarias para entender por completo el potencial de invasión.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Densidade Demográfica , Temperatura , Incerteza
10.
Ecol Appl ; 31(1): e2215, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32767487

RESUMO

Marine Protected Areas (MPAs) are increasingly established globally as a spatial management tool to aid in conservation and fisheries management objectives. Assessing whether MPAs are having the desired effects on populations requires effective monitoring programs. A cornerstone of an effective monitoring program is an assessment of the statistical power of sampling designs to detect changes when they occur. We present a novel approach to power assessment that combines spatial point process models, integral projection models (IPMs) and sampling simulations to assess the power of different sample designs across a network of MPAs. We focus on the use of remotely operated vehicle (ROV) video cameras as the sampling method, though the results could be extended to other sampling methods. We use empirical data from baseline surveys of an example indicator fish species across three MPAs in California, USA as a case study. Spatial models simulated time series of spatial distributions across sites that accounted for the effects of environmental covariates, while IPMs simulated expected trends over time in abundances and sizes of fish. We tested the power of different levels of sampling effort (i.e., the number of 500-m ROV transects) and temporal replication (every 1-3 yr) to detect expected post-MPA changes in fish abundance and biomass. We found that changes in biomass are detectable earlier than changes in abundance. We also found that detectability of MPA effects was higher in sites with higher initial densities. Increasing the sampling effort had a greater effect than increasing sampling frequency on the time taken to achieve high power. High power was best achieved by combining data from multiple sites. Our approach provides a powerful tool to explore the interaction between sampling effort, spatial distributions, population dynamics, and metrics for detecting change in previously fished populations.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Biomassa , Ecossistema , Peixes , Dinâmica Populacional
11.
Proc Natl Acad Sci U S A ; 117(41): 25580-25589, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989156

RESUMO

Anthropogenic environmental change is altering the behavior of animals in ecosystems around the world. Although behavior typically occurs on much faster timescales than demography, it can nevertheless influence demographic processes. Here, we use detailed data on behavior and empirical estimates of demography from a coral reef ecosystem to develop a coupled behavioral-demographic ecosystem model. Analysis of the model reveals that behavior and demography feed back on one another to determine how the ecosystem responds to anthropogenic forcing. In particular, an empirically observed feedback between the density and foraging behavior of herbivorous fish leads to alternative stable ecosystem states of coral population persistence or collapse (and complete algal dominance). This feedback makes the ecosystem more prone to coral collapse under fishing pressure but also more prone to recovery as fishing is reduced. Moreover, because of the behavioral feedback, the response of the ecosystem to changes in fishing pressure depends not only on the magnitude of changes in fishing but also on the pace at which changes are imposed. For example, quickly increasing fishing to a given level can collapse an ecosystem that would persist under more gradual change. Our results reveal conditions under which the pace and not just the magnitude of external forcing can dictate the response of ecosystems to environmental change. More generally, our multiscale behavioral-demographic framework demonstrates how high-resolution behavioral data can be incorporated into ecological models to better understand how ecosystems will respond to perturbations.


Assuntos
Mudança Climática , Ecossistema , Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Animais , Antozoários/fisiologia , Recifes de Corais , Peixes/fisiologia , Herbivoria/fisiologia , Atividades Humanas , Humanos
12.
Ecol Appl ; 30(5): e02108, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096584

RESUMO

Harvest mortality typically truncates the harvested species' size structure, thereby reducing phenotypic complexity, which can lead to reduced population productivity, increased population variability, and selection on an array of life history traits that can further alter these demographic processes. Marine protected areas (MPAs) are a potential tool to protect older, larger individuals and therefore mitigate such ecological and evolutionary effects of harvest, depending on the degree of connectivity among areas. Such MPA protection relies on a shift in size-dependent mortality, the measurement of which can therefore serve as an early indicator of whether MPAs might achieve the desired longer-term ecological and evolutionary responses. We directly measured MPA effects on size-selective mortality and associated size structure using mark-recapture data on European lobster (Homarus gammarus) collected at three MPA-control area pairs in southern Norway during one decade (n = 5,943). Mark-recapture modeling, accounting for variation in recapture probabilities, revealed (1) that annual mean survival was higher inside MPAs (0.592) vs. control areas (0.298) and (2) that significant negative relationships between survival and body size occurred at the control areas but not in the MPAs, where the effect of body size was predominantly positive. Additionally, we found (3) that mean and maximum body size increased over time inside MPAs but not in control areas. Overall, our results suggest that MPAs can rebuild phenotypic complexity (i.e., size structure) and provide protection from harvest selection.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Tamanho Corporal , Peixes , Humanos , Nephropidae , Noruega
13.
Biol Lett ; 16(1): 20190727, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31964264

RESUMO

Body size is a trait that broadly influences the demography and ecology of organisms. In unitary organisms, body size tends to increase with age. In modular organisms, body size can either increase or decrease with age, with size changes being the net difference between modules added through growth and modules lost through partial mortality. Rates of colony extension are independent of body size, but net growth is allometric, suggesting a significant role of size-dependent mortality. In this study, we develop a generalizable model of partitioned growth and partial mortality and apply it to data from 11 species of reef-building coral. We show that corals generally grow at constant radial increments that are size independent, and that partial mortality acts more strongly on small colonies. We also show a clear life-history trade-off between growth and partial mortality that is governed by growth form. This decomposition of net growth can provide mechanistic insights into the relative demographic effects of the intrinsic factors (e.g. acquisition of food and life-history strategy), which tend to affect growth, and extrinsic factors (e.g. physical damage, and predation), which tend to affect mortality.


Assuntos
Antozoários , Animais , Tamanho Corporal , Demografia , Ecologia
14.
Ecology ; 101(1): e02904, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562771

RESUMO

Disturbance plays a key role in structuring community dynamics and is central to conservation and natural resource management. However, ecologists continue to debate the importance of disturbance for species coexistence and biodiversity. Such disagreements may arise in part because few studies have examined variation across multiple dimensions of disturbance (e.g., size, frequency) and how the effects of disturbance may depend on species attributes (e.g., competitiveness, dispersal ability). In light of this gap in understanding and accelerating changes to disturbance regimes worldwide, we used spatial population models to explore how disturbance size and frequency interact with species attributes to affect coexistence between seagrass (Zostera marina) and colonial burrowing shrimp (Neotrypaea californiensis) that compete for benthic space in estuaries throughout the west coast of North America. By simulating population dynamics under a range of ecologically relevant disturbance regimes, we discovered that intermediate disturbance (approximately 9-23% of landscape area per year) to short-dispersing, competitively dominant seagrass can foster long-term stable coexistence with broad-dispersing, competitively inferior burrowing shrimp via the spatial storage effect. When holding the total extent of disturbance constant, the individual size and annual frequency of disturbance altered landscape spatial patterns and mediated the dominance and evenness of competitors. Many small disturbances favored short-dispersing seagrass by hastening recolonization, whereas fewer large disturbances benefited rapidly colonizing burrowing shrimp by creating temporary refugia from competition. As a result, large, infrequent disturbances generally improved the strength and stability of coexistence relative to small, frequent disturbances. Regardless of disturbance size or frequency, the dispersal ability of the superior competitor (seagrass), the competitive ability of the inferior competitor (burrowing shrimp), and the reproduction and survival of both species strongly influenced population abundances and coexistence. Our results show that disturbance size and frequency can promote or constrain coexistence by altering the duration of time over which inferior competitors can escape competitive exclusion, particularly when colonization depends on the spatial pattern of disturbance due to dispersal traits. For coastal managers and conservation practitioners, our findings indicate that reducing particularly large disturbances may help conserve globally imperiled seagrass meadows and control burrowing shrimp colonies that can threaten the viability of oyster aquaculture.


Assuntos
Ecossistema , Zosteraceae , Biodiversidade , América do Norte , Dinâmica Populacional
15.
Ecology ; 101(2): e02930, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724154

RESUMO

Whether ecosystems recover from disturbance depends on the presence of alternative stable states, which are theoretically possible in simple models of many systems. However, definitive empirical evidence for this phenomenon remains limited to demographically closed ecosystems such as lakes. In more interconnected systems such as temperate rocky reefs, the local relevance of alternative stable states might erode as immigration overwhelms local feedbacks and produces a single stable state. At larger spatial scales, dispersal might counter localized disturbance and feedbacks to synchronize states throughout a region. Here, we quantify how interconnectedness affects the relevance of alternative stable states using dynamical models of California rocky reef communities that incorporate observed environmental stochasticity and feedback loops in kelp-urchin-predator interactions. Our models demonstrate the potential for localized alternative states despite high interconnectedness likely due to feedbacks affecting dispersers as they settle into local communities. Regionally, such feedbacks affecting settlement can produce a mosaic of alternative stable states that span local (10-20 km) scales despite the synchronizing effect of long-distance dispersal. The specific spatial scale and duration of each state predominantly depend on the scales of environmental variation and on local dynamics (here, fishing). Model predictions reflect observed scales of community states in California rocky reefs and suggest how alternative states co-occur in the wide array of marine and terrestrial systems with settlement feedbacks.


Assuntos
Ecossistema , Kelp , Cadeia Alimentar , Lagos
16.
Evol Appl ; 12(8): 1552-1568, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31462914

RESUMO

Many of the world's most prevalent diseases are transmitted by animal vectors such as dengue transmitted by mosquitoes. To reduce these vector-borne diseases, a promising approach is "genetic shifting": selective breeding of the vectors to be more resistant to pathogens and releasing them to the target populations to reduce their ability to transmit pathogens, that is, lower their vector competence. The efficacy of genetic shifting will depend on possible counterforces such as natural selection against low vector competence. To quantitatively evaluate the potential efficacy of genetic shifting, we developed a series of coupled genetic-demographic models that simulate the changes of vector competence during releases of individuals with low vector competence. We modeled vector competence using different genetic architectures, as a multilocus, one-locus, or two-locus trait. Using empirically determined estimates of model parameters, the model predicted a reduction of mean vector competence of at least three standard deviations after 20 releases, one release per generation, and 10% of the size of the target population released each time. Sensitivity analysis suggested that release efficacy depends mostly on the vector competence of the released population, release size, release frequency, and the survivorship of the released individuals, with duration of the release program less important. Natural processes such as density-dependent survival and immigration from external populations also strongly influence release efficacy. Among different sex-dependent release strategies, releasing blood-fed females together with males resulted in the highest release efficacy, as these females mate in captivity and reproduce when released, thus contributing a greater proportion of low-vector-competence offspring. Conclusions were generally consistent across three models assuming different genetic architectures of vector competence, suggesting that genetic shifting could generally apply to various vector systems and does not require detailed knowledge of the number of loci contributing to vector competence.

17.
Ecol Appl ; 29(6): e01949, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31188493

RESUMO

Adaptive management of marine protected areas (MPAs) requires developing methods to evaluate whether monitoring data indicate that they are performing as expected. Modeling the expected responses of targeted species to an MPA network, with a clear timeline for those expectations, can aid in the development of a monitoring program that efficiently evaluates expectations over appropriate time frames. Here, we describe the expected trajectories in abundance and biomass following MPA implementation for populations of 19 nearshore fishery species in California. To capture the process of filling in the age structure truncated by fishing, we used age-structured population models with stochastic larval recruitment to predict responses to MPA implementation. We implemented both demographically open (high larval immigration) and closed (high self-recruitment) populations to model the range of possible trajectories as they depend on recruitment dynamics. From these simulations, we quantified the time scales over which anticipated increases in abundance and biomass inside MPAs would become statistically detectable. Predicted population biomass responses range from little change, for species with low fishing rates, to increasing by a factor of nearly seven, for species with high fishing rates before MPA establishment. Increases in biomass following MPA implementation are usually greater in both magnitude and statistical detectability than increases in abundance. For most species, increases in abundance would not begin to become detectable for at least 10 years after implementation. Overall, these results inform potential indicator metrics (biomass), potential indicator species (those with a high fishing : natural mortality ratio), and time frame (>10 yr) for MPA monitoring assessment as part of the adaptive management process.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Biomassa , California , Peixes , Dinâmica Populacional
18.
Theor Popul Biol ; 129: 93-102, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31028784

RESUMO

Domesticated individuals are likely to be maladaptive in the wild due to adaptation to captivity. Escaped aquaculture fish can cause unintended fitness and demographic consequences for their wild conspecifics through interbreeding and competition. Escape events from different sources exhibit great heterogeneity in their frequencies and magnitudes, ranging from rare but large spillover during a storm, to continuous low-level leakage caused by operational errors. The timescale of escape events determines the distribution of gene flow from aquaculture to the wild. The evolutionary consequences of this variation in timescale will depend on the degree of generation overlap and the focal species' life history attributes, especially those under selection in aquaculture (e.g., growth rate, which can influence additional demographically important traits such as age at maturity). To evaluate the effects of variable escape both within and across generations, we construct an age-structured model of coupled genetic and demographic dynamics and parameterize it for species with contrasting life history characteristics (Salmo salar and Gadus morhua). Our results are consistent with earlier discrete-generation models that constant, low-level spillover can have a greater impact than rare, large pulses of leakage, even after accounting for the averaging effects of overlapping generations. The age-structured model also allows detailed evaluation of the role of different life history traits, which reveals that species with longer generation times might experience greater fitness consequences of aquaculture spillover but are less sensitive to variability in spillover. Additionally, environment-induced earlier maturity of escapees can increase the fitness effects on wild fish, especially those with shorter generation times. Our results suggest that effective management to minimize the unintended fitness consequences of aquaculture releases might require extensive monitoring efforts on constant, low-level spillover and assessment of the focal species' life history characteristics.


Assuntos
Aquicultura , Fluxo Gênico , Características de História de Vida , Animais , Pesqueiros , Peixes/genética , Modelos Estatísticos
19.
Am Nat ; 192(2): E62-E80, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30016162

RESUMO

Connectivity among populations can have counteracting effects on population stability. Demographically, connectivity can rescue local populations but increase the synchrony across populations. Genetically, connectivity can counteract drift locally but homogenize genotypes across populations. Population independence and diversity underlies system-level buffering against environmental variability, termed the portfolio effect. The portfolio effect has declined in California fall-run Chinook salmon, possibly in part because of the trucking of juvenile hatchery-reared fish for downstream release, which reduces juvenile mortality but increases the connectivity between rivers. We use a dynamical population model to test whether this increased connectivity can explain the loss of the portfolio effect and quantify the relative demographic and genetic contributions to portfolio effect erosion. In the model, populations experience different within-population environmental conditions and the same time-variable ocean conditions, the response to which can depend on a quantitative genetic trait. We find that increased trucking for one population's hatchery can lead to a loss of the portfolio effect, with a system-level trade-off between increased average abundance and increased variability in abundance. This trade-off is much stronger when we include the effects of genetic homogenization than when we consider demographic synchronization alone. Therefore, genetic homogenization can outweigh demographic synchrony in determining the system-level effect of connectivity.


Assuntos
Fluxo Gênico , Variação Genética , Modelos Genéticos , Salmão/genética , Animais , Meios de Transporte
20.
Trends Ecol Evol ; 33(7): 535-548, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748042

RESUMO

When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities.


Assuntos
Invertebrados/fisiologia , Comportamento Social , Vertebrados/fisiologia , Animais , Modelos Biológicos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...