Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(5-1): 054702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907387

RESUMO

We explore the structure and magnetic-field response of edge dislocations in Grandjean-Cano wedge cells filled with chiral mixtures of the ferroelectric nematic mesogen DIO. Upon cooling, the ordering changes from paraelectric in the cholesteric phase N^{*} to antiferroelectric in the smectic SmZ_{A}^{*} and to ferroelectric in the cholesteric N_{F}^{*}. Dislocations of the Burgers vector b equal to the helicoidal pitch P are stable in all three phases, while dislocations with b=P/2 exist only in the N^{*} and SmZ_{A}^{*}. The b=P/2 dislocations split into pairs of τ^{-1/2}λ^{+1/2} disclinations, while the thick dislocations b=P are pairs of nonsingular λ^{-1/2}λ^{+1/2} disclinations. The polar order makes the τ^{-1/2} disclinations unstable in the N_{F}^{*} phase, as they should be connected to singular walls in the polarization field. We propose a model of transformation of the composite τ^{-1/2} line-wall defect into a nonsingular λ^{-1/2} disclination, which is paired up with a λ^{+1/2} line to form a b=P dislocation. The SmZ_{A}^{*} behavior in the in-plane magnetic field is different from that of the N_{F}^{*} and N^{*}: the dislocations show no zigzag instability, and the pitch remains unchanged in the magnetic fields up to 1 T. The behavior is associated with the finite compressibility of smectic layers.

2.
Science ; 383(6689): 1364-1368, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513040

RESUMO

Ferroelectric nematic liquid crystals are formed by achiral molecules with large dipole moments. Their three-dimensional orientational order is described as unidirectionally polar. We demonstrate that the ground state of a flat slab of a ferroelectric nematic unconstrained by externally imposed alignment directions is chiral, with left- and right-handed twists of polarization. Although the helicoidal deformations and defect walls that separate domains of opposite handedness increase the elastic energy, the twists reduce the electrostatic energy and become weaker when the material is doped with ions. This work shows that the polar orientational order of molecules could trigger chirality in soft matter with no chemically induced chiral centers.

3.
Heliyon ; 9(10): e20610, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37842567

RESUMO

As an attempt to improve the catalytic processes in different electrochemical systems, molybdenum dioxide nanoparticles were prepared using the hydrothermal method, and their electrical and dielectric properties were investigated. The nanoparticles were polycrystalline with an orthorhombic structure. AC electrical transport properties of the pressed disc were conducted over a temperature range of 303-423 K and a frequency range of 42-5 × 106 Hz. The AC conductivity follows Jonscher's universal dynamic law, and it has been determined that correlated barrier hopping (CBH) is the primary conduction mechanism. The maximum barrier height (WM) was found to be 0.92 eV. The low activation energy showed that hopping conduction is the dominant mechanism of transporting current. The dielectric parameters were analyzed using both complex permittivity and complex electric modulus, with a focus on how they vary with temperature and frequency. At relatively high temperatures and low frequencies, the dielectric parameters showed a high-frequency dependence. The dielectric modulus showed that relaxation peaks move towards lower frequency when temperature increases. The dielectric relaxation activation energy, Δ Eω was determined to be 0.31 eV.

4.
Nat Commun ; 14(1): 748, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765061

RESUMO

Spontaneous electric polarization of solid ferroelectrics follows aligning directions of crystallographic axes. Domains of differently oriented polarization are separated by domain walls (DWs), which are predominantly flat and run along directions dictated by the bulk translational order and the sample surfaces. Here we explore DWs in a ferroelectric nematic (NF) liquid crystal, which is a fluid with polar long-range orientational order but no crystallographic axes nor facets. We demonstrate that DWs in the absence of bulk and surface aligning axes are shaped as conic sections. The conics bisect the angle between two neighboring polarization fields to avoid electric charges. The remarkable bisecting properties of conic sections, known for millennia, play a central role as intrinsic features of liquid ferroelectrics. The findings could be helpful in designing patterns of electric polarization and space charge.

5.
Nat Commun ; 13(1): 3932, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798735

RESUMO

Surface interactions are responsible for many properties of condensed matter, ranging from crystal faceting to the kinetics of phase transitions. Usually, these interactions are polar along the normal to the interface and apolar within the interface. Here we demonstrate that polar in-plane surface interactions of a ferroelectric nematic NF produce polar monodomains in micron-thin planar cells and stripes of an alternating electric polarization, separated by [Formula: see text] domain walls, in thicker slabs. The surface polarity binds together pairs of these walls, yielding a total polarization rotation by [Formula: see text]. The polar contribution to the total surface anchoring strength is on the order of 10%. The domain walls involve splay, bend, and twist of the polarization. The structure suggests that the splay elastic constant is larger than the bend modulus. The [Formula: see text] pairs resemble domain walls in cosmology models with biased vacuums and ferromagnets in an external magnetic field.

6.
Oral Maxillofac Surg ; 22(4): 385-401, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30206745

RESUMO

PURPOSE: Augmented reality-based constructive jaw surgery has been facing various limitations such as noise in real-time images, the navigational error of implants and jaw, image overlay error, and occlusion handling which have limited the implementation of augmented reality (AR) in corrective jaw surgery. This research aimed to improve the navigational accuracy, through noise and occlusion removal, during positioning of an implant in relation to the jaw bone to be cut or drilled. METHOD: The proposed system consists of a weighting-based de-noising filter and depth mapping-based occlusion removal for removing any occluded object such as surgical tools, the surgeon's body parts, and blood. RESULTS: The maxillary (upper jaw) and mandibular (lower jaw) jaw bone sample results show that the proposed method can achieve the image overlay error (video accuracy) of 0.23~0.35 mm and processing time of 8-12 frames per second compared to 0.35~0.45 mm and 6-11 frames per second by the existing best system. CONCLUSION: The proposed system concentrates on removing the noise from the real-time video frame and the occlusion. Thus, the acceptable range of accuracy and the processing time are provided by this study for surgeons for carrying out a smooth surgical flow.


Assuntos
Reconstrução Mandibular/métodos , Radiografia Intervencionista/métodos , Cirurgia Assistida por Computador/métodos , Algoritmos , Humanos , Imageamento Tridimensional/métodos , Mandíbula/cirurgia , Maxila/cirurgia , Cirurgia Vídeoassistida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...