Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 32(3): 319-328, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38627097

RESUMO

Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

2.
Br J Cancer ; 128(8): 1491-1502, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759727

RESUMO

BACKGROUND: Chaperon-mediated autophagy (CMA) has taken on a new emphasis in cancer biology. However, the roles of CMA in hypoxic tumours are poorly understood. We investigated the anti-tumour effects of the natural product ManA through the activation of CMA in tumour progression under hypoxia. METHODS: The effect of ManA on CMA activation was assessed in mouse xenograft models and cells. The gene expressions of HIF-1α, HSP90AA1, and transcription factor EB (TFEB) were analysed using The Cancer Genome Atlas (TCGA) datasets to assess the clinical relevance of CMA. RESULTS: ManA activates photoswitchable CMA reporter activity and inhibits Hsp90 chaperone function by disrupting the Hsp90/F1F0-ATP synthase complex. Hsp90 inhibition enhances the interaction between CMA substrates and LAMP-2A and TFEB nuclear localisation, suggesting CMA activation by ManA. ManA-activated CMA retards tumour growth and displays cooperative anti-tumour activity with anti-PD-1 antibody. TCGA datasets show that a combined expression of HSP90AA1High/HIF1AHigh or TFEBLow/HIF1AHigh is strongly correlated with poor prognosis in patients with lung cancer. CONCLUSIONS: ManA-induced CMA activation by modulating Hsp90 under hypoxia induces HIF-1α degradation and reduces tumour growth. Thus, inducing CMA activity by targeting Hsp90 may be a promising therapeutic strategy against hypoxic tumours.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Hipóxia , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares , Autofagia/genética
3.
Oncotarget ; 8(41): 70521-70537, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050299

RESUMO

Cancer stem cells (CSCs) are associated with cancer recurrence following radio/chemotherapy owing to their high resistance to therapeutic intervention. In this study, we investigated the role of exostoxin 1 (EXT1), an endoplasmic reticulum (ER)-residing type II transmembrane glycoprotein, in cancer cell stemness. DNA microarray analysis revealed that doxorubicin-resistant MCF7/ADR cells have high levels of EXT1 expression compared to its parental cell line, MCF7. These cells showed significantly higher populations of CSCs and larger populations of aldehyde dehydrogenase (ALDH+) and CD44+/CD24-cells, as compared to MCF7 cells. siRNA-mediated knockdown of EXT1 in MCF7/ADR cells significantly reduced cancer stem cell markers, populations of ALDH+and CD44+/CD24- cells, mRNA and protein expression for CD44, and mammosphere number. Furthermore, epithelial mesenchymal transition (EMT) markers and migratory behavior were also repressed with reduced EXT1. In an in vitro soft agar colony formation assay, EXT1 knockdown by short hairpin RNA (shRNA) reduced the colony formation ability of these cells. Based on these results, we suggest that EXT1 could be a promising novel target to overcome cancer cell stemness in anthracycline-based therapeutic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...