Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37233062

RESUMO

The increase in the global population has led to a rise in organic waste generation and landfill sites. Consequently, there has been a global shift in focus towards the utilization of BSFL to address these challenges. This study aims to design, develop, and test a user-friendly BSFL bin and identify the optimal MCCM for treating organic waste using BSFL. The four BSFL bins have a dimension of 330 mm (width) × 440 mm (length) × 285 mm (height). This study uses mixtures of food waste added with different MCCMs, including chicken feed, rice bran, and garden waste. We add the mediums to the BSFL bins every third day and measure the humidity, ambient temperature, pH, medium temperature, and BSFL weight and length. The measurements show that the fabricated BSFL bins can fulfill the BSF lifecycle requirements. Wild BSFs lay eggs in the medium of BSFL bins, and the hatched larvae decompose it. When they reach the prepupae stage, they climb the ramp into the harvesting container. The results show that the food waste without MCCM produced the heaviest (0.228 g) and longest (2.16 cm) larvae; the prepupae are 2.15 cm long and weigh 0.225 g; and the growth rate is 53.72%. However, the high moisture content of 75.3% makes the maintenance work challenging. The medium with MCCM has a markedly lower moisture content of 51-58%. A comparison of the three MCCMs shows that the chicken feed produces the larvae and prepupae with the highest growth rate (the larvae are 2.10 cm long and weigh 0.224 g, the prepupae are 2.11 cm long and weigh 0.221 g, and the growth rate is 72.36%) and the frass with the lowest moisture content (51.2%). An effective BSFL composting system is easy to manage and produces the biggest larvae. In summary, food waste mixed with chicken feed is the most suitable MCCM for treating organic waste using BSFL.

2.
Foods ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36076850

RESUMO

The disposal of large amounts of food waste has caused serious environmental pollution and financial losses globally. Compared to alternative disposal methods (landfills, incineration, and anaerobic digestion), composting by black soldier fly larvae (BSFL) is a promising alternative for food waste management. Despite extensive research into larval biomass, another valuable by-product generated from BSFL composting is BSFL frass. However, limited information is available for its potential application. The applications of BSFL frass can be intensified by understanding its physicochemical characteristics, benefits, and challenges of BSFL frass derived from food waste. BSFL frass is harvested after 9-23 days of the experiment, depending on the substrate used in the composting process. The generated BSFL frass could exceed 33% of the original weight of the substrate. The physicochemical characteristics of BSFL frass are as follows: the temperature after harvest is 24 °C to 27 °C, pH is 5.6-8.0, moisture content is 30 to 72%, C/N ratio is 8:1 to 27:1, high nitrogen, phosphorus, and potassium (NPK) content, and low heavy metal content. This paper reviews the characteristics, benefits, and application of BSFL frass. It will also investigate the challenges of using food waste substrates to produce BSFL frass, as well as the best way to pre-treat the food waste substrate and post-treat the BSFL frass.

3.
J Environ Manage ; 237: 255-263, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30798044

RESUMO

After twenty-four years of government efforts, the latest national recycling rate in Malaysia rose from 5% in 1993 to approximately 24.6% in 2017. However, the practice of solid waste recycling in developing countries is still challenging compared to developing countries. Especially in Malaysia, a multi-ethnic country where people with different ethics have different living lifestyles. Still, Malaysia faces rapidly increasing solid waste and management costs, lacks appropriate data on solid waste management and recycling, lacks awareness of the 3R's (reduce, reuse and recycle) culture and lacks policies to promote 3R's culture. In addition, prior to the enforcement of ACT 672, information and networks between stakeholders have been limited for more than 20 years. Some scholars believe that the success of recycling practices is mainly influenced by community recycling behaviours. Therefore, in order to improve and evaluate the effectiveness of current national solid waste recycling management systems, research and assessment of community recycling behaviours are essential. This paper aims to evaluate the factors that attract communities to implement recycling in their daily lives and to obtain data through quantitative survey methods. Face-to-face questionnaires are conducted through purposive sampling and collected data is further analysed by PASW statistical tools. The comparison between recyclers and non-recyclers are presented in terms of frequency, means scores and radar chart. The results indicate that policy makers involved in the planning, organisation, and implementation of community recycling programs have to focus on strategies that engage community members and adopt recycling practices to improve environmental impact by changing their attitudes. Based on the results of means scores, the type of age, occupation and place of life must be taken into consideration in order to organize future recycling campaigns or awareness programs. In conclusion, the information will help policymakers make better solid waste recycling management to meet the needs of the public.


Assuntos
Reciclagem , Gerenciamento de Resíduos , Meio Ambiente , Malásia , Resíduos Sólidos
4.
Waste Manag ; 74: 362-372, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29370968

RESUMO

This study investigated the behavior and mechanisms of cross-linked Durio zibethinus seed starch (CDSS) flocculants for landfill leachate treatment. A physical-chemical treatment method of coagulation-flocculation process and starch modification were implemented in treating stabilized leachate from Matang Landfill, Perak, Malaysia. In practical, the removal performance of color, COD, suspended solid and turbidity for CDSS flocculants were evaluated by combining with primary coagulant of polyaluminium chloride (PAC). In this study, the application of crosslinking modification for Durio zibethinus seed waste starch flocculants showed good improvement. The impurities removal for colour, COD, suspended solid and turbidity were increased by the addition of CDSS flocculants. Furthermore, the average size of the floc was also increased from 60.24 µm to 89.5 µm. Despite, the addition of CDSS flocculants produced a reduction of PAC coagulant from 2700 mg/L to 2200 mg/L, with 500 mg/L reduction on the PAC dosage dependency. Therefore, these results affirmed the potentials of crosslinked modification for Durio zibethinus seed waste starch flocculants in landfill leachate treatment.


Assuntos
Bombacaceae , Instalações de Eliminação de Resíduos , Purificação da Água , Floculação , Malásia , Amido , Poluentes Químicos da Água
5.
J Air Waste Manag Assoc ; 64(2): 150-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24654384

RESUMO

Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties.


Assuntos
Metano/química , Modelos Químicos , Solo/química , Algoritmos , Redes Neurais de Computação , Oxirredução
6.
Environ Monit Assess ; 185(12): 9967-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23797636

RESUMO

Methane (CH4) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH4 generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH4 and carbon dioxide (CO2) emissions at four monitoring locations were used to estimate the CH4 oxidation capacity. The temporal variations in CH4 and CO2 emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH4 emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH4 emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH4 emissions from the studied area were 53.8 kg day(−1). The mean of the CH4 oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH4 oxidation in the wet tropical climate for enhancing CH4 emission reduction.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Solo/química , Instalações de Eliminação de Resíduos , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Malásia , Oxirredução , Clima Tropical
7.
Environ Monit Assess ; 185(6): 4919-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23054277

RESUMO

Methane (CH4) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO2), risking human health and the environment. Microbial CH4 oxidation in landfill cover soils may constitute a means of controlling CH4 emissions. The study was intended to quantify CH4 and CO2 emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH4 oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH4 to CO2 emissions was 25.4 %, indicating higher CO2 emissions than CH4 emissions. Also, the average CH4 oxidation in the landfill cover soil was 52.5 %. The CH4 and CO2 emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH4 emissions and oxidation (R(2) = 0.46). It can be concluded that the variation in the CH4 oxidation was mainly attributed to the properties of the landfill cover soil.


Assuntos
Poluentes Atmosféricos/análise , Eliminação de Resíduos/métodos , Solo/química , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Malásia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...