Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 346: 113845, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34454938

RESUMO

Viral infection of the central nervous system (CNS) can cause lasting neurological decline in surviving patients and can present with symptoms resembling Parkinson's disease (PD). The mechanisms underlying postencephalitic parkinsonism remain unclear but are thought to involve increased innate inflammatory signaling in glial cells, resulting in persistent neuroinflammation. We therefore studied the role of glial cells in regulating neuropathology in postencephalitic parkinsonism by studying the involvement of astrocytes in loss of dopaminergic neurons and aggregation of α-synuclein protein following infection with western equine encephalitis virus (WEEV). Infections were conducted in both wildtype mice and in transgenic mice lacking NFκB inflammatory signaling in astrocytes. For 2 months following WEEV infection, we analyzed glial activation, neuronal loss and protein aggregation across multiple brain regions, including the substantia nigra pars compacta (SNpc). These data revealed that WEEV induces loss of SNpc dopaminergic neurons, persistent activation of microglia and astrocytes that precipitates widespread aggregation of α-synuclein in the brain of C57BL/6 mice. Microgliosis and macrophage infiltration occurred prior to activation of astrocytes and was followed by opsonization of ⍺-synuclein protein aggregates in the cortex, hippocampus and midbrain by the complement protein, C3. Astrocyte-specific NFκB knockout mice had reduced gliosis, α-synuclein aggregate formation and neuronal loss. These data suggest that astrocytes play a critical role in initiating PD-like pathology following encephalitic infection with WEEV through innate immune inflammatory pathways that damage dopaminergic neurons, possibly by hindering clearance of ⍺-synuclein aggregates. Inhibiting glial inflammatory responses could therefore represent a potential therapy strategy for viral parkinsonism.


Assuntos
Astrócitos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Encefalite Viral/metabolismo , Mediadores da Inflamação/metabolismo , Agregados Proteicos/fisiologia , alfa-Sinucleína/metabolismo , Animais , Astrócitos/imunologia , Neurônios Dopaminérgicos/imunologia , Vírus da Encefalite Equina do Oeste/imunologia , Vírus da Encefalite Equina do Oeste/metabolismo , Encefalite Viral/imunologia , Feminino , Humanos , Mediadores da Inflamação/imunologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
2.
Exp Mol Pathol ; 97(1): 128-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972347

RESUMO

Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) deficient mice in the FVB/n strain exhibit fatal chronic pulmonary fibrotic disease. The illness occurs in the absence of a detectable pro-inflammatory event. PECAM-1 is vital to the stability of vascular permeability, leukocyte extravasation, clotting of platelets, and clearance of apoptotic cells. We show here that the spontaneous development of fibrotic disease in PECAM-1 deficient FVB/n mice is characterized by early loss of vascular integrity in pulmonary capillaries, resulting in spontaneous microbleeds. Hemosiderin-positive macrophages were found in interstitial spaces and bronchoalveolar lavage (BAL) fluid in relatively healthy animals. We also observed a gradually increasing presence of hemosiderin-positive macrophages and fibrin deposition in the advanced stages of disease, corresponding to the accumulation of collagen, IL-10 expression, and myofibroblasts expressing alpha smooth muscle actin (SMA). Together with the growing evidence that pulmonary microbleeds and coagulation play an active part in human pulmonary fibrosis, this data further supports our hypothesis that PECAM-1 expression is necessary for vascular barrier function control and regulation of homeostasis specifically, in the pulmonary environment.


Assuntos
Hemorragia/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Animais , Tempo de Sangramento , Modelos Animais de Doenças , Fibrina/metabolismo , Hemorragia/metabolismo , Hemossiderina/metabolismo , Interleucina-10/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos , Miofibroblastos/patologia , Fibrose Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...