Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 86(9): 3975-3986, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34392534

RESUMO

Dry beans(Phaseolus vulgaris) are rich in complex carbohydrates including resistant starch (RS). RS, the starch fraction that escapes digestion, typically ranges from 35% in raw beans to 4% in cooked beans. A low RS bean genotype, Cebo Cela, was identified with 96% less RS (1.5% RS) than normal raw beans. The goal of this research was to elucidate the factors responsible for this low RS phenotype. The low RS phenotype was evaluated in whole bean flour and starch in Cebo Cela (yellow), Canario (yellow), Alpena (navy) and Samurai (otebo). α-Amylase activation was found to be a major contributor of the low RS content phenotype of the whole bean flour for Cebo Cela (-21.9% inhibition). Total starch (43.6%-40.2%), amylose (31.0%-31.5%), molecular weight and chain length distributions of amylose and amylopectin did not contribute to the low RS phenotype. Yellow bean starches were digested nearly 1.5 times (95%-94%) faster than starch granules from otebo and navy beans (65%-73%) due to lower proportions of amylopectin chains. PRACTICAL APPLICATION: This study is of value to the food industry because the yellow bean, Cebo Cela, is easily hydrolyzed by α-amylase and also has α-amylase promotion properties. Therefore, Cebo Cela can be used as an alternate starch source for ethanol fermentation and for the production of maltodextrins and fructose/glucose syrups which are used as food thickeners and sweeteners.


Assuntos
Análise de Alimentos , Phaseolus , Amido Resistente , Amilose/análise , Phaseolus/química , Fenótipo , Amido Resistente/análise
2.
Front Plant Sci ; 12: 670284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239523

RESUMO

Manteca yellow dry beans (Phaseolus vulgaris L.) have many quality traits that appeal to consumers, including fast cooking times, creamy texture, and sweet, buttery flavor. They are native to Chile and consumed in regions of South America and Africa but are largely unfamiliar to United States consumers. While cooking time, flavor, and texture have not been prioritized in United States dry bean breeding programs, genetic variability exists such that these traits could be addressed through breeding. In this study, a recombinant inbred line (RIL) population was developed from a cross between Ervilha (Manteca) and PI527538 (Njano), yellow dry beans with contrasting cooking time and sensory attributes. The population and parents were grown for 2 years in Michigan and evaluated for cooking time and sensory attribute intensities, including total flavor, beany, vegetative, earthy, starchy, sweet, bitter, seed-coat perception, and cotyledon texture. Cooking time ranged 19-34 min and exhibited high broad-sense heritability (0.68). Sensory attribute intensities also exhibited variation among RILs, although broad-sense heritability was low, with beany and total flavor exhibiting the highest (0.33 and 0.27). A linkage map of 870 single nucleotide polymorphisms markers across 11 chromosomes was developed for quantitative trait loci (QTL) mapping, which revealed QTL for water uptake (3), cooking time (6), sensory attribute intensities (28), color (13), seed-coat postharvest non-darkening (1), seed weight (5), and seed yield (2) identified from data across 2 years. Co-localization was identified for starchy, sweet, and seed-coat perception on Pv01; for total flavor, beany, earthy, starchy, sweet, bitter, seed-coat perception, cotyledon texture, and color on Pv03; water uptake and color on Pv04; total flavor, vegetative, sweet, and cotyledon texture on Pv07; cooking time, starchy, sweet, and color on Pv08; and water uptake, cooking time, total flavor, beany, starchy, bitter, seed-coat perception, cotyledon texture, color, and seed-coat postharvest non-darkening on Pv10. The QTL identified in this work, in particular CT8.2 and CT10.2, can be used to develop molecular markers to improve seed quality traits in future dry bean varieties. Considering yellow dry beans already excel in quality and convenience, they might be an ideal market class to signal a new focus on consumer-valued traits in the United States.

3.
Food Res Int ; 141: 109886, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641942

RESUMO

Dry beans are an affordable, nutritious food that often require long cooking times. Storage time and conditions, growing environment, and genotype influence cooking times. Little is known about factors underlying genetic variation for cooking time. Using fast and slow cooking genotypes from four different seed types (brown, cranberry, red mottled, yellow), the objectives of this study were to (1) characterize genetic variability for cooking time across multiple soaking time points; (2) determine the roles of seed coat and cotyledon cell wall physical traits in genetic variability for cooking time; and (3) identify seed coat and cotyledon cell wall compositional differences associated with genetic variability for cooking time. Genotypes were evaluated for cooking time on unsoaked beans and beans soaked for 3, 6, 12, 18, and 24 h. Cooking times were sharply reduced after 3 h of soaking and plateaued after 6 h of soaking. Interestingly, the genotypes in each pair that cooked faster when soaked did not necessarily cook faster when unsoaked. Greater seed coat percentage, cotyledon cell wall thickness, total and insoluble whole seed dietary fiber, and insoluble cotyledon cell wall isolate were genotypic factors associated with longer cooking times of soaked beans. Thicker seed coat macrosclereid- and osteosclereid-layers were genotypic factors associated with longer cooking times of unsoaked beans. These findings suggest that cotyledon cell wall thickness and composition have a significant role in genetic variability for cooking time of soaked beans and seed coat layer thickness relates to the genetic variability for cooking time of unsoaked beans.


Assuntos
Phaseolus , Parede Celular , Culinária , Cotilédone/genética , Temperatura Alta , Phaseolus/genética , Sementes/genética
4.
Theor Appl Genet ; 134(3): 959-978, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388888

RESUMO

KEY MESSAGE: Cooked bean flavor and texture vary within and across 20 Andean seed types; SNPs are significantly associated with total flavor, beany, earthy, starchy, bitter, seed-coat perception, and cotyledon texture. Common dry beans are a nutritious food recognized as a staple globally, but their consumption is low in the USA. Improving bean flavor and texture through breeding has the potential to improve consumer acceptance and suitability for new end-use products. Little is known about genetic variability and inheritance of bean sensory characteristics. A total of 430 genotypes of the Andean Diversity Panel representing twenty seed types were grown in three locations, and cooked seeds were evaluated by a trained sensory panel for flavor and texture attribute intensities, including total flavor, beany, vegetative, earthy, starchy, sweet, bitter, seed-coat perception, and cotyledon texture. Extensive variation in sensory attributes was found across and within seed types. A set of genotypes was identified that exhibit extreme attribute intensities generally stable across all three environments. seed-coat perception and total flavor intensity had the highest broad-sense heritability (0.39 and 0.38, respectively), while earthy and vegetative intensities exhibited the lowest (0.14 and 0.15, respectively). Starchy and sweet flavors were positively correlated and highest in white bean genotypes according to principal component analysis. SNPs associated with total flavor intensity (six SNPs across three chromosomes), beany (five SNPs across four chromosomes), earthy (three SNPs across two chromosomes), starchy (one SNP), bitter (one SNP), seed-coat perception (three SNPs across two chromosomes), and cotyledon texture (two SNPs across two chromosomes) were detected. These findings lay a foundation for incorporating flavor and texture in breeding programs for the development of new varieties that entice growers, consumers, and product developers alike.


Assuntos
Culinária , Phaseolus/química , Phaseolus/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sementes/química , Sementes/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Genótipo , Phaseolus/fisiologia , Sementes/fisiologia , Amido/análise
5.
J Sci Food Agric ; 100(10): 3995-4004, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32338379

RESUMO

BACKGROUND: While it is generally accepted that fast-cooking germplasm benefits consumers, benefits to the canning industry have not been established. Genotypes with good canning quality withstand the canning process while remaining intact with good appearance, but canning protocols used by breeders typically involve long processing times that may overcook some genotypes. The goal of this study was to identify whether cooking time influences canning quality in dry beans and whether reducing processing time could improve canning quality of fast-cooking genotypes. RESULTS: A set of 20 yellow bean genotypes including Ervilha, PI527538 and 18 derived recombinant inbred lines were selected for their varied cooking times. By comparing the genotypes processed across five retort times, differences in canning quality were identified. All genotypes performed better when processed for less time than the standard 45 min, but canning quality was highest at 10 min for fast- and medium-cooking genotypes and 15 min for slow-cooking genotypes. Cooking time was correlated positively with texture and intactness and negatively with washed-drained weights, indicating that slower cooking beans have higher canning quality. Color changed with retort processing such that longer times produced darker beans with more red and yellow. CONCLUSIONS: While fast-cooking beans exhibited lower canning quality at standard processing times, reduced retort processing time allowed them to meet quality standards while still maintaining food safety. By accounting for cooking time as a component of canning quality, breeders can develop varieties that are convenient and cost efficient for preparation for both consumers and the canning industry. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Culinária/métodos , Phaseolus/química , Genótipo , Temperatura Alta , Phaseolus/classificação , Sementes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...