Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12240, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851050

RESUMO

The present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Each system consists of arrays of independent microdetectors covering 2 mm[Formula: see text]2 mm and 0.4 mm[Formula: see text]12 cm radiation sensitive areas, the sensor distributions are arranged in layouts of 11[Formula: see text]11 microdetectors and 3[Formula: see text]3 multi-arrays, respectively. We have performed proton irradiations at several energies to compare the microdosimetry performance of the two systems, which have different spatial resolution and detection surface. The unitcell of both arrays is a 3D cylindrical diode with a 25 [Formula: see text]m diameter and a 20 [Formula: see text]m depth that results in a welldefined and isolated radiation sensitive micro-volume etched inside a silicon wafer. Measurements were carried out at the Accélérateur Linéaire et Tandem à Orsay (ALTO) facility by irradiating the two detection systems with monoenergetic proton beams from 6 to 20 MeV at clinical-equivalent fluence rates. The microdosimetry quantities were obtained with a spatial resolution of 200 [Formula: see text]m and 600 [Formula: see text]m for the 11[Formula: see text]11 system and for the 3[Formula: see text]3 multi-array system, respectively. Experimental results were compared with Monte Carlo simulations and an overall good agreement was found. The good performance of both microdetector arrays demonstrates that this architecture and both configurations can be used clinically as microdosimeters for measuring the lineal energy distributions and, thus, for RBE optimization of hadron therapy treatments. Likewise, the results have shown that the devices can be also employed as a multipurpose device for beam monitoring in particle accelerators.


Assuntos
Terapia com Prótons , Radiometria , Método de Monte Carlo , Prótons , Radiometria/métodos , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...