Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 34(5): e3003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38890813

RESUMO

Large terrestrial mammals increasingly rely on human-modified landscapes as anthropogenic footprints expand. Land management activities such as timber harvest, agriculture, and roads can influence prey population dynamics by altering forage resources and predation risk via changes in habitat, but these effects are not well understood in regions with diverse and changing predator guilds. In northeastern Washington state, USA, white-tailed deer (Odocoileus virginianus) are vulnerable to multiple carnivores, including recently returned gray wolves (Canis lupus), within a highly human-modified landscape. To understand the factors governing predator-prey dynamics in a human context, we radio-collared 280 white-tailed deer, 33 bobcats (Lynx rufus), 50 cougars (Puma concolor), 28 coyotes (C. latrans), and 14 wolves between 2016 and 2021. We first estimated deer vital rates and used a stage-structured matrix model to estimate their population growth rate. During the study, we observed a stable to declining deer population (lambda = 0.97, 95% confidence interval: 0.88, 1.05), with 74% of Monte Carlo simulations indicating population decrease and 26% of simulations indicating population increase. We then fit Cox proportional hazard models to evaluate how predator exposure, use of human-modified landscapes, and winter severity influenced deer survival and used these relationships to evaluate impacts on overall population growth. We found that the population growth rate was dually influenced by a negative direct effect of apex predators and a positive effect of timber harvest and agricultural areas. Cougars had a stronger effect on deer population dynamics than wolves, and mesopredators had little influence on the deer population growth rate. Areas of recent timber harvest had 55% more forage biomass than older forests, but horizontal visibility did not differ, suggesting that timber harvest did not influence predation risk. Although proximity to roads did not affect the overall population growth rate, vehicle collisions caused a substantial proportion of deer mortalities, and reducing these collisions could be a win-win for deer and humans. The influence of apex predators and forage indicates a dual limitation by top-down and bottom-up factors in this highly human-modified system, suggesting that a reduction in apex predators would intensify density-dependent regulation of the deer population owing to limited forage availability.


Assuntos
Cervos , Dinâmica Populacional , Lobos , Animais , Cervos/fisiologia , Lobos/fisiologia , Humanos , Comportamento Predatório , Washington , Atividades Humanas , Coiotes/fisiologia , Puma/fisiologia , Cadeia Alimentar , Ecossistema , Lynx/fisiologia
2.
Ecology ; 105(4): e4255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38361248

RESUMO

To manage predation risk, prey navigate a dynamic landscape of fear, or spatiotemporal variation in risk perception, reflecting predator distributions, traits, and activity cycles. Prey may seek to reduce risk across this landscape using habitat at times and in places when predators are less active. In multipredator landscapes, avoiding one predator could increase vulnerability to another, making the landscape of fear difficult to predict and navigate. Additionally, humans may shape interactions between predators and prey, and induce new sources of risk. Humans can function as a shield, providing a refuge for prey from human-averse carnivores, and as a predator, causing mortality through hunting and vehicle collisions and eliciting a fear response that can exceed that of carnivores. We used telemetry data collected between 2017 and 2021 from 63 Global Positioning System-collared elk (Cervus canadensis), 42 cougars (Puma concolor), and 16 wolves (Canis lupus) to examine how elk habitat selection changed in relation to carnivores and humans in northeastern Washington, USA. Using step selection functions, we evaluated elk habitat use in relation to cougars, wolves, and humans, diel period (daytime vs. nighttime), season (summer calving season vs. fall hunting season), and habitat structure (open vs. closed habitat). The diel cycle was critical to understanding elk movement, allowing elk to reduce encounters with predators where and when they would be the largest threat. Elk strongly avoided cougars at night but had a near-neutral response to cougars during the day, whereas elk avoided wolves at all times of day. Elk generally used more open habitats where cougars and wolves were most active, rather than altering the use of habitat structure depending on the predator species. Elk avoided humans during the day and ~80% of adult female mortality was human caused, suggesting that humans functioned as a "super predator" in this system. Simultaneously, elk leveraged the human shield against wolves but not cougars at night, and no elk were confirmed to have been killed by wolves. Our results add to the mounting evidence that humans profoundly affect predator-prey interactions, highlighting the importance of studying these dynamics in anthropogenic areas.


Assuntos
Cervos , Puma , Lobos , Animais , Humanos , Feminino , Ecossistema , Cervos/fisiologia , Medo , Comportamento Predatório/fisiologia
3.
Ecol Appl ; 33(1): e2745, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107138

RESUMO

Estimating habitat and spatial associations for wildlife is common across ecological studies and it is well known that individual traits can drive population dynamics and vice versa. Thus, it is commonly assumed that individual- and population-level data should represent the same underlying processes, but few studies have directly compared contemporaneous data representing these different perspectives. We evaluated the circumstances under which data collected from Lagrangian (individual-level) and Eulerian (population-level) perspectives could yield comparable inference to understand how scalable information is from the individual to the population. We used Global Positioning System (GPS) collar (Lagrangian) and camera trap (Eulerian) data for seven species collected simultaneously in eastern Washington (2018-2020) to compare inferences made from different survey perspectives. We fit the respective data streams to resource selection functions (RSFs) and occupancy models and compared estimated habitat- and space-use patterns for each species. Although previous studies have considered whether individual- and population-level data generated comparable information, ours is the first to make this comparison for multiple species simultaneously and to specifically ask whether inferences from the two perspectives differed depending on the focal species. We found general agreement between the predicted spatial distributions for most paired analyses, although specific habitat relationships differed. We hypothesize the discrepancies arose due to differences in statistical power associated with camera and GPS-collar sampling, as well as spatial mismatches in the data. Our research suggests data collected from individual-based sampling methods can capture coarse population-wide patterns for a diversity of species, but results differ when interpreting specific wildlife-habitat relationships.


Assuntos
Animais Selvagens , Ecossistema , Animais , Sistemas de Informação Geográfica , Inquéritos e Questionários , Telemetria
4.
Ecol Appl ; 32(8): e2714, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184581

RESUMO

A clear connection between basic research and applied management is often missing or difficult to discern. We present a case study of integration of basic research with applied management for estimating abundance of gray wolves (Canis lupus) in Montana, USA. Estimating wolf abundance is a key component of wolf management but is costly and time intensive as wolf populations continue to grow. We developed a multimodel approach using an occupancy model, mechanistic territory model, and empirical group size model to improve abundance estimates while reducing monitoring effort. Whereas field-based wolf counts generally rely on costly, difficult-to-collect monitoring data, especially for larger areas or population sizes, our approach efficiently uses readily available wolf observation data and introduces models focused on biological mechanisms underlying territorial and social behavior. In a three-part process, the occupancy model first estimates the extent of wolf distribution in Montana, based on environmental covariates and wolf observations. The spatially explicit mechanistic territory model predicts territory sizes using simple behavioral rules and data on prey resources, terrain ruggedness, and human density. Together, these models predict the number of packs. An empirical pack size model based on 14 years of data demonstrates that pack sizes are positively related to local densities of packs, and negatively related to terrain ruggedness, local mortalities, and intensity of harvest management. Total abundance estimates for given areas are derived by combining estimated numbers of packs and pack sizes. We estimated the Montana wolf population to be smallest in the first year of our study, with 91 packs and 654 wolves in 2007, followed by a population peak in 2011 with 1252 wolves. The population declined ~6% thereafter, coincident with implementation of legal harvest in Montana. Recent numbers have largely stabilized at an average of 191 packs and 1141 wolves from 2016 to 2020. This new approach accounts for biologically based, spatially explicit predictions of behavior to provide more accurate estimates of carnivore abundance at finer spatial scales. By integrating basic and applied research, our approach can therefore better inform decision-making and meet management needs.


Assuntos
Lobos , Animais , Humanos , Ecossistema , Densidade Demográfica , Comportamento Social , Montana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...