Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1358487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863634

RESUMO

Introduction: The ability to dynamically adjust target contours, derived Boolean structures, and ultimately, the optimized fluence is the end goal of online adaptive radiotherapy (ART). The purpose of this work is to describe the necessary tests to perform after a software patch installation and/or upgrade for an established online ART program. Methods: A patch upgrade on a low-field MR Linac system was evaluated for post-software upgrade quality assurance (QA) with current infrastructure of ART workflow on (1) the treatment planning system (TPS) during the initial planning stage and (2) the treatment delivery system (TDS), which is a TPS integrated into the delivery console for online ART planning. Online ART QA procedures recommended for post-software upgrade include: (1) user interface (UI) configuration; (2) TPS beam model consistency; (3) segmentation consistency; (4) dose calculation consistency; (5) optimizer robustness consistency; (6) CT density table consistency; and (7) end-to-end absolute ART dose and predicted dose measured including interruption testing. Differences of calculated doses were evaluated through DVH and/or 3D gamma comparisons. The measured dose was assessed using an MR-compatible A26 ionization chamber in a motion phantom. Segmentation differences were assessed through absolute volume and visual inspection. Results: (1) No UI configuration discrepancies were observed. (2) Dose differences on TPS pre-/post-software upgrade were within 1% for DVH metrics. (3) Differences in segmentation when observed were small in general, with the largest change noted for small-volume regions of interest (ROIs) due to partial volume impact. (4) Agreement between TPS and TDS calculated doses was 99.9% using a 2%/2-mm gamma criteria. (5) Comparison between TPS and online ART plans for a given patient plan showed agreement within 2% for targets and 0.6 cc for organs at risk. (6) Relative electron densities demonstrated comparable agreement between TPS and TDS. (7) ART absolute and predicted measured end-to-end doses were within 1% of calculated TDS. Discussion: An online ART QA program for post-software upgrade has been developed and implemented on an MR Linac system. Testing mechanics and their respective baselines may vary across institutions, but all necessary components for a post-software upgrade QA have been outlined and detailed. These outlined tests were demonstrated feasible for a low-field MR Linac system; however, the scope of this work may be applied and adapted more broadly to other online ART platforms.

2.
Med Dosim ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431501

RESUMO

Single-fraction stereotactic radiosurgery (SRS) or fractionated SRS (FSRS) are well established strategies for patients with limited brain metastases. A broad spectrum of modern dedicated platforms are currently available for delivering intracranial SRS/FSRS; however, SRS/FSRS delivered using traditional CT-based platforms relies on the need for diagnostic MR images to be coregistered to planning CT scans for target volume delineation. Additionally, the on-board image guidance on traditional platforms yields limited inter-fraction and intra-fraction real-time visualization of the tumor at the time of treatment delivery. MR Linacs are capable of obtaining treatment planning MR and on-table MR sequences to enable visualization of the targets and organs-at-risk and may subsequently help identify anatomical changes prior to treatment that may invoke the need for on table treatment adaptation. Recently, an MR-guided intracranial package (MRIdian A3i BrainTxTM) was released for intracranial treatment with the ability to perform high-resolution MR sequences using a dedicated brain coil and cranial immobilization system. The objective of this report is to provide, through the experience of our first patient treated, a comprehensive overview of the clinical application of our institutional program for FSRS adaptive delivery using MRIdian's A3i BrainTx system-highlights include reviewing the imaging sequence selection, workflow demonstration, and details in its delivery feasibility in clinical practice, and dosimetric outcomes.

4.
Tomography ; 10(1): 169-180, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250959

RESUMO

Radiotherapy for ultracentral lung tumors represents a treatment challenge, considering the high rates of high-grade treatment-related toxicities with stereotactic body radiation therapy (SBRT) or hypofractionated schedules. Accelerated hypofractionated magnetic resonance-guided adaptive radiation therapy (MRgART) emerged as a potential game-changer for tumors in these challenging locations, in close proximity to central organs at risk, such as the trachea, proximal bronchial tree, and esophagus. In this series, 13 consecutive patients, predominantly male (n = 9), with a median age of 71 (range (R): 46-85), underwent 195 MRgART fractions (all 60 Gy in 15 fractions) to metastatic (n = 12) or primary ultra-central lung tumors (n = 1). The median gross tumor volumes (GTVs) and planning target volumes (PTVs) were 20.72 cc (R: 0.54-121.65 cc) and 61.53 cc (R: 3.87-211.81 cc), respectively. The median beam-on time per fraction was 14 min. Adapted treatment plans were generated for all fractions, and indications included GTV/PTV undercoverage, OARs exceeding tolerance doses, or both indications in 46%, 18%, and 36% of fractions, respectively. Eight patients received concurrent systemic therapies, including immunotherapy (four), chemotherapy (two), and targeted therapy (two). The crude in-field loco-regional control rate was 92.3%. No CTCAE grade 3+ toxicities were observed. Our results offer promising insights, suggesting that MRgART has the potential to mitigate toxicities, enhance treatment precision, and improve overall patient care in the context of ultracentral lung tumors.


Assuntos
Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Espectroscopia de Ressonância Magnética
5.
Int J Radiat Oncol Biol Phys ; 118(2): 512-524, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793574

RESUMO

PURPOSE: This is the first reporting of the MRIdian A3iTM intracranial package (BrainTxTM) and benchmarks the end-to-end localization and dosimetric accuracy for commissioning an magnetic resonace (MR)-guided stereotactic radiosurgery program. We characterized the localization accuracy between MR and radiation (RT) isocenter through an end-to-end hidden target test, relative dose profile intercomparison, and absolute dose validation. METHODS AND MATERIALS: BrainTx consists of a dedicated head coil, integrated mask immobilization system, and high-resolution MR sequences. Coil and baseplate attenuation was quantified. An in-house phantom (Cranial phantOm foR magNetic rEsonance Localization of a stereotactIc radiosUrgery doSimeter, CORNELIUS) was developed from a mannequin head filled with silicone gel, film, and MR BB with pinprick. A hidden target test evaluated MR-RT localization of the 1×1×1 mm3 TrueFISP MR and relative dose accuracy in film for a 1 cm diameter (International Electrotechnical Commission (IEC)-X/IEC-Y) and 1.5 cm diameter (IEC-Y/IEC-Z) spherical target. Two clinical cases (irregular-shaped target and target abutting brainstem) were mapped to the CORNELIUS phantom for feasibility assessment. A 2-dimensional (2D)-gamma compared calculated and measured dose for spherical and clinical targets with 1 mm/1% and 2 mm/2% criteria, respectively. A small-field chamber (A26MR) measured end-to-end absolute dose for a 1 cm diameter target. RESULTS: Coil and baseplate attenuation were 0.7% and 2.7%, respectively. The displacement of MR to RT localization as defined through the pinprick was 0.49 mm (IEC-X), 0.27 mm (IEC-Y), and 0.51 mm (IEC-Z) (root mean square 0.76 mm). The reproducibility across IEC-Y demonstrated high fidelity (<0.02 mm). Gamma pass rates were 97.1% and 95.4% for 1 cm and 1.5 cm targets, respectively. Dose profiles for an irregular-shaped target and abutting organ-at-risk-target demonstrated pass rates of 99.0% and 92.9%, respectively. The absolute end-to-end dose difference was <1%. CONCLUSIONS: All localization and dosimetric evaluation demonstrated submillimeter accuracy, per the TG-142, TG-101, MPPG 9.a. criteria for SRS/SRT systems, indicating acceptable delivery capabilities with a 1 mm setup margin.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Espectroscopia de Ressonância Magnética
6.
Radiother Oncol ; 188: 109869, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657726

RESUMO

BACKGROUND AND PURPOSE: Planning on a static dataset that reflects the simulation day anatomy is routine for SBRT. We hypothesize the quality of on-table adaptive plans is similar to the baseline plan when delivering stereotactic MR-guided adaptive radiotherapy (SMART) for pancreatic cancer (PCa). MATERIALS AND METHODS: Sixty-seven inoperable PCa patients were prescribed 50 Gy/5-fraction SMART. Baseline planning included: 3-5 mm gastrointestinal (GI) PRV, 50 Gy optimization target (PTVopt) based on GI PRV, conformality rings, and contracted GTV to guide the hotspot. For each adaptation, GI anatomy was re-contoured, followed by re-optimization. Plan quality was evaluated for target coverage (TC = PTVopt V100%/volume), PTV D90% and D80%, homogeneity index (HI = PTVopt D2%/D98%), prescription isodose/target volume (PITV), low-dose conformity (D2cm = maximum dose at 2 cm from PTVopt/Rx dose), and gradient index (R50%=50% Rx isodose volume/PTVopt volume).A novel global planning metric, termed the Pancreas Adaptive Radiotherapy Score (PARTS), was developed and implemented based on GI OAR sparing, PTV/GTV coverage, and conformality. Adaptive robustness (baseline to fraction 1) and stability (difference between two fractions with highest GI PRV variation) were quantified. RESULTS: OAR constraints were met on all baseline (n = 67) and adaptive (n = 318) plans. Coverage for baseline/adaptive plans was mean ± SD at 44.9 ± 5.8 Gy/44.3 ± 5.5 Gy (PTV D80%), 50.1 ± 4.2 Gy/49.1 ± 4.7 Gy (PTVopt D80%), and 80%±18%/74%±18% (TC), respectively. Mean homogeneity and conformality for baseline/adaptive plans were 0.87 ± 0.25/0.81 ± 0.30 (PITV), 3.81 ± 1.87/3.87 ± 2.0 (R50%), 1.53 ± 0.23/1.55 ± 0.23 (HI), and 58%±7%/59%±7% (D2cm), respectively. PARTS was found to be a sensitive metric due to its additive influence of geometry changes on PARTS' sub-metrics. There were no statistical differences (p > 0.05) for stability, except for PARTS (p = 0.04, median difference -0.6%). Statistical differences for robustness when significant were small for most metrics (<2.0% median). Median adaptive re-optimizations were 2. CONCLUSION: We describe a 5-fraction ablative SMART planning approach for PCa that is robust and stable during on-table adaption, due to gradients controlled by a GI PRV technique and the use of rings. These findings are noteworthy given that daily interfraction anatomic GI OAR differences are routine, thus necessitating on-table adaptation. This work supports feasibility towards utilizing a patient-independent, template on-table adaptive approach.

7.
J Appl Clin Med Phys ; 24(11): e14111, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535938

RESUMO

BACKGROUND AND PURPOSE: In the emerging paradigm of stereotactic radiosurgery being proposed for MR-guided radiotherapy (MRgRT), assessment of mechanical geometric accuracy is critical for the implementation of stereotactic delivery. We benchmarked the mechanical accuracy of an MR Linac system that lacks an onboard detector/array. Our mechanical tests utilize a half beam block (HBB) geometry that takes advantage of the sensitivity of a partially occluded detector. MATERIALS AND METHODS: Mechanical tests benchmarked the couch, MLC, and gantry geometric accuracy for an MR-Linac system. An HBB technique was used to irradiate an ionization chamber profiler (ICP) array with partial occlusion of individual detectors for characterization of MLC skew, beam divergence displacement, and RT isocenter localization. The sensitivity of the partially occluded detector's ICP-X (detector width) and ICP-Y (detector length) was characterized by displacing the detector relative to radiation isocenter by 0.2 mm increments, introduced through couch motion. The accuracy of the HBB ICP technique was verified with a starshot using radiochromic film, and the reproducibility was verified on a conventional C-arm Linac and compared to Winston-Lutz. RESULTS: The sensitivity of the HBB technique as quantified through the dose difference normalized to open field as a function of displacement from RT isocenter was 6.4%/mm and 13.0%/mm for the ICP-X and ICP-Y orientation, respectively, due to the oblong detector orientation. Couch positional accuracy and sag was within ±0.1 mm. Maximum MLC positional displacement was 0.7 mm with mean MLC skew at 0.07°. The maximum beam divergence displacement was 0.03 mm. The gantry angle was within 0.1°. Independent verification of the RT isocenter localization procedure produced repeatable results. CONCLUSION: This work serves for characterizing the mechanical and geometric radiation accuracy for the foundation of an MR-guided stereotactic radiosurgery program, as demonstrated with high sensitivity and independent validation.


Assuntos
Aceleradores de Partículas , Radiocirurgia , Humanos , Reprodutibilidade dos Testes , Radiocirurgia/métodos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
8.
Med Dosim ; 48(4): 238-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37330328

RESUMO

Given the positive results from recent randomized controlled trials in patients with oligometastatic, oligoprogressive, or oligoresidual disease, the role of radiotherapy has expanded in patients with metastatic non-small cell lung cancer (NSCLC). While small metastatic lesions are commonly treated with stereotactic body radiotherapy (SBRT), treatment of the primary tumor and involved regional lymph nodes may require prolonged fractionation schedules to ensure safety especially when treating larger volumes in proximity to critical organs-at-risk (OARs). We have developed an institutional MR-guided adaptive radiotherapy (MRgRT) workflow for these patients. We present a 71-year-old patient with stage IV NSCLC with oligoprogression of the primary tumor and associated regional lymph nodes in which MR-guided, online adaptive radiotherapy was performed, prescribing 60 Gy in 15 fractions. We describe our workflow, dosimetric constraints, and daily dosimetric comparisons for the critical OARs (esophagus, trachea, and proximal bronchial tree [PBT] maximum doses [D0.03cc]), in comparison to the original treatment plan recalculated on the anatomy of the day (i.e., predicted doses). During MRgRT, few fractions met the original dosimetric objectives: 6.6% for esophagus, 6.6% for PBT, and 6.6% for trachea. Online adaptive radiotherapy reduced the cumulative doses to the structures by 11.34%, 4.2%, and 5.62% when comparing predicted plan summations to the final delivered summation. Therefore, this case study presets a workflow and treatment paradigm for accelerated hypofractionated MRgRT due to the significant variations in daily dose to the central thoracic OARs to reduce treatment-related toxicity associated with radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radiocirurgia/métodos , Espectroscopia de Ressonância Magnética
9.
Med Dosim ; 48(3): 127-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36966049

RESUMO

For patients with newly diagnosed glioblastoma, the current standard-of-care includes maximal safe resection, followed by concurrent chemoradiotherapy and adjuvant temozolomide, with tumor treating fields. Traditionally, diagnostic imaging is performed pre- and post-resection, without additional dedicated longitudinal imaging to evaluate tumor volumes or other treatment-related changes. However, the recent introduction of MR-guided radiotherapy using the ViewRay MRIdian A3i system includes a dedicated BrainTx package to facilitate the treatment of intracranial tumors and provides daily MR images. We present the first reported case of a glioblastoma imaged and treated using this workflow. In this case, a 67-year-old woman underwent adjuvant chemoradiotherapy after gross total resection of a left frontal glioblastoma. The radiotherapy treatment plan consisted of a traditional two-phase design (46 Gy followed by a sequential boost to a total dose of 60 Gy at 2 Gy/fraction). The treatment planning process, institutional workflow, treatment imaging, treatment timelines, and target volume changes visualized during treatment are presented. This case example using our institutional A3i system workflow successfully allows for imaging and treatment of primary brain tumors and has the potential for margin reduction, detection of early disease progression, or to detect the need for dose adaptation due to interfraction tumor volume changes.

10.
Int J Radiat Biol ; 99(2): 308-317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35709481

RESUMO

PURPOSE: The purpose of this study was to quantify the microscopic dose distribution surrounding gold nanoparticles (GNPs) irradiated at therapeutic energies and to measure the changes in cell survival in vitro caused by this dose enhancement. METHODS: The dose distributions from secondary electrons surrounding a single gold nanosphere and single gold nanocube of equal volume were both simulated using MCNP6. Dose enhancement factors (DEFs) in the 1 µm3 volume surrounding a GNP were calculated and compared between a nanosphere and nanocube and between 6 and 18 MV energies. This microscopic effect was explored further by experimentally measuring the cell survival of C-33a cervical cancer cells irradiated at 18 MV with varying doses of energy and concentrations of GNPs. Survival of cells receiving no irradiation, a 3 Gy dose, and a 6 Gy dose of 18 MV energy were determined for each concentration of GNPs. RESULTS: It was observed that the dose from electrons surrounding the gold nanocube surpasses that of a gold nanosphere up to a distance of 1.1 µm by 18.5% for the 18 MV energy spectrum and by 23.1% for the 6 MV spectrum. DEFs ranging from ∼2 to 8 were found, with the maximum DEF resulting from the case of the gold nanocube irradiated at 6 MV energy. Experimentally, for irradiation at 18 MV, incubating cells with 6 nM (0.10% gold by mass) GNPs produces an average 6.7% decrease in cell survival, and incubating cells with 9 nM (0.15% gold by mass) GNPs produces an average 14.6% decrease in cell survival, as compared to cells incubated and irradiated without GNPs. CONCLUSION: We have successfully demonstrated the potential radiation dose enhancing effects in vitro and microdosimetrically from gold nanoparticles.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/farmacologia , Ouro/uso terapêutico , Método de Monte Carlo , Elétrons
11.
Appl Radiat Isot ; 171: 109638, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33631502

RESUMO

Dose enhancement due to gold nanoparticles (GNPs) has been quantified experimentally and through Monte Carlo simulations for external beam radiation therapy energies of 6 and 18 MV. The highest enhancement was observed for the 18 MV beam at the highest GNP concentration tested, amounting to a DEF of 1.02. DEF is shown to increase with increasing concentration of gold and increasing energy in the megavoltage energy range. The largest difference in measured vs. simulated DEF across all data sets was 0.3%, showing good agreement.

12.
Phys Med Biol ; 65(13): 135007, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32434159

RESUMO

Gold nanoparticles (GNPs) have been studied extensively as promising radiation dose enhancing agents. In the current study, the dose enhancement effect of GNPs for Ir-192 HDR brachytherapy is studied using Monte Carlo N-Particle code, version 6.2 (MCNP6.2) and compared with experimental results obtained using Burlin cavity theory formalism. The Ir-192 source is verified using TG-43 parameters and dose enhancement factors (DEFs) from GNPs are simulated for three different mass percentages of gold in the GNP solution. These results are compared to DEFs previously reported experimentally by our group (Bassiri et al 2019 Med. Phys.) for a GNP-containing volume in an apparatus designed in-house to measure dose enhancement with GNPs for high dose rate (HDR) Ir-192 brachytherapy. An HDR Ir-192 Microselectron v2 r HDR brachytherapy source was modeled using MCNP6.2 using the TG-43 formalism in water. Anisotropy and radial dose function were verified against known values. An apparatus designed to measure dose enhancement to a 0.75 cm3 volume of GNPs from an Ir-192 brachytherapy seed with average energy of 0.38 MeV was built in-house and modeled using MCNP6.2. Burlin cavity correction factors were applied to experimental measurements. The macroscopic DEF was calculated for GNPs of size 30 nm at mass percentages of gold of 0.28%, 0.56% and 0.77%, using the repeating structures capability of MCNP6.2. DEF was calculated by dividing dose to the GNP solution by dose to water in the same volume. The radial dose function and anisotropy factor values at varying angles and distances were accurate when compared against known values. DEFs of 1.018 ± 0.003, 1.031 ± 0.003, and 1.041 ± 0.003 for GNP solutions containing mass percent of gold of 0.28%, 0.56% and 0.77%, respectively, were computed. These DEFs were within 2% of experimental values with Burlin cavity correction factors applied for all three mass percentages of gold.


Assuntos
Braquiterapia/métodos , Ouro/química , Radioisótopos de Irídio/uso terapêutico , Nanopartículas Metálicas , Método de Monte Carlo , Doses de Radiação , Anisotropia , Humanos , Dosagem Radioterapêutica , Água
13.
Biomed Phys Eng Express ; 6(4): 047002, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33444284

RESUMO

The purpose of this study is to define a simplified method to accurately predict and characterize kV cone beam computed tomography (kV CBCT) and computed tomography (CT) image contrast enhancement from gold nanoparticles (GNPs). Parameters of the kV CBCT of a Varian Novalis Tx linear accelerator and of a GE LightSpeed 4 Big Bore CT machine were modeled using the MCNP 6.2 Monte Carlo code. A 0.25 × 0.25 cm2 source, defined with a 100 kVp energy spectrum with appropriate filtration, was implemented in the MCNP6.2 model for kV CBCT, which also contained x- and y-blades and a full bowtie filter. A 1 cm3 cube of GNP solution (modeled as a mass percentage of gold in water) was placed 100 cm below the source. For the CT-simulator model, a source was defined with energy spectra for 80 and 140 kVp x-rays with appropriate filtration and angular spectrum. A 1 cm3 GNP solution was modeled as before and a detector was placed 40 cm below that. Attenuation coefficients of four GNP solutions were computed and Hounsfield unit (HU) values were calculated. The computed HU values were compared against experimentally measured values obtained by scanning batches of GNPs of various sizes and concentrations using a GE LightSpeed 4 Big Bore CT scanner at 80 kVp and 140 kVp energies, as well as the kV CBCT capability of a Varian Novalis Tx linear accelerator. HU analysis was carried out using Velocity Medical Solutions clinical CT image analysis software. The MCNP calculated HU values matched the measured values to within ± 5%. Image contrast enhancement analysis showed a total increase in HU of up to 223. The sample having the highest gold mass percentage tested showed the greatest increase in HU number compared to water.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Algoritmos , Animais , Linhagem Celular , Simulação por Computador , Meios de Contraste , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes , Software , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X
14.
Med Phys ; 47(1): 260-266, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31660622

RESUMO

PURPOSE: The purpose of this work is to introduce a simple yet accurate technique to measure the dose enhancement factor (DEF) of a citrate-capped gold nanoparticle (GNP) solution using EBT3 film in an 192 Ir setup. METHODS: Dose enhancement factor is the ratio of absorbed dose in a solution compared to absorbed dose in water, assuming identical irradiation parameters. Citrate-capped GNPs were synthesized. An acrylic apparatus was constructed such that the EBT3 film was placed in charged particle equilibrium within the GNP solution with 0.28%, 0.56%, and 0.77% gold by mass. Sets of 12 dose measurements were collected for each GNP concentration as well as for water. The expected value of DEF was also calculated with the effective mass absorption coefficient of the GNP solution and water for an 192 Ir spectrum. Furthermore, Burlin cavity correction factors were calculated and experimentally verified. Experimental verification of the cavity correction was performed by measuring DEF using stacks of 1, 3, and 5 sheets of film and extrapolating the DEF to 0 sheets of film. RESULTS: Experimental cavity corrections agreed with those calculated with the Burlin cavity formalism. The calculated DEF was 1.013, 1.027, and 1.037 for the 0.28%, 0.56%, and 0.77% gold by mass GNP solutions, respectively. The corresponding uncorrected DEF measurement values were 1.013 ± 0.006, 1.024 ± 0.010, and 1.032 ± 0.006, respectively. When applying the Burlin cavity formalism, the final corrected DEF measurement values were 1.016 ± 0.006, 1.029 ± 0.010, and 1.039 ± 0.006, respectively. CONCLUSIONS: The experimental cavity correction results agreed with the theoretical Burlin calculations, which allowed for the Burlin corrections to be performed for all GNP concentrations and measured DEF values. The adjusted DEF values agreed with the theoretical calculations. Thus, these results indicate that a Burlin cavity calculation can be applied to correct film-based DEF measurements for 192 Ir.


Assuntos
Dosimetria Fotográfica , Ouro/química , Nanopartículas Metálicas , Ácido Cítrico/química
15.
Appl Radiat Isot ; 155: 108925, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757713

RESUMO

Monte Carlo N-Particle 6 (MCNP6) is the latest version of Los Alamos National Laboratory's powerful Monte Carlo software designed to compute general photon, neutron, and electron transport using stochastic algorithms. Here we provide a case study of modeling the photon beam of a Varian 600C Clinical Linear Accelerator (linac), which is used to deliver radiation therapy, along with a comparison to experimentally measured beam characteristics. The source definition parameters in MCNP6, including the energy spectrum and angular spectrum of the photons, secondary and tertiary collimators, and a water phantom that tallied dose delivered at different points along the phantom are included. The experimental data for comparison was in the form of a percent depth dose curve as well as crossline and inline beam profiles. Experimental depth dose curve and beam profiles were acquired using a standard 0.125 cc ion chamber within a water phantom. In the computational model, the simulated depth dose curve was computed by tallying the total energy deposited in a stack of vertical slices down the depth of the phantom for percent depth dose curves. The simulated beam profiles were computed in a similar fashion, by tallying the energy deposited in a horizontal row, both in the x- and y-directions of cubic cells located at various depths. For the percent depth dose curve, a mean absolute percentage difference of 1.02%, 1.07%, and 1.94% were calculated for field sizes of 5 × 5 cm2, 10 × 10 cm2 and 20 × 20 cm2, respectively, between the model and experimental measurements were calculated. We present our model as an example to guide other MCNP6 users in the medical physics community to create similar beam models for biomedical dose estimation and research calculations for predicting dose to newly developed phantoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...