Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1325186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384289

RESUMO

Background: Patients receiving dialysis have high cardiovascular risk in part due to extensive vascular calcification. In the CaLIPSO study, infusion of hexasodium fytate (SNF472), the hexasodium salt of inositol hexaphosphate, for 52 weeks thrice weekly during hemodialysis significantly reduced progression of coronary artery calcification (CAC). This report examines pharmacokinetic/pharmacodynamic (PK/PD) and exposure-efficacy in CaLIPSO. Methods: We measured hexasodium fytate plasma concentrations (PK) by validated liquid chromatography-mass spectroscopy, and hydroxyapatite crystallization in plasma (PD) by validated spectrophotometry. Analyses included patients evaluable for PK, PD, and CAC change (per-protocol analysis). We developed a simple Emax model for maximum concentration (Cmax) and PD effect, and linear and non-linear Emax models for exposure-efficacy among individual average Cmax and absolute and percent changes in CAC score from baseline to week 52. Results: Among evaluable patients receiving placebo (n = 15), 300 mg (n = 20), or 600 mg (n = 20), average Cmax across visits was not quantifiable (<0.76 µM), 15 µM, and 46 µM, respectively. These results suggest a more-than-proportional increase, without accumulation, with a Cmax ratio of approximately 3 for the doses administered. Average inhibition of hydroxyapatite crystallization was 15%, 61%, and 75%, respectively, and similar across visits. Simple Emax models described 80% maximal effect at exposures >21.9 µM and a plateau in exposure-efficacy above the third quartile of Cmax (≥32 µM). Conclusion: Hexasodium fytate has exposure-dependent effects on hydroxyapatite crystallization and progression of cardiovascular calcification. Simple Emax models show robust relations among exposure, inhibition of hydroxyapatite crystallization, and change in CAC volume. Clinical Trial Registration: https://www.clinicaltrials.gov; identifier NCT02966028.

2.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38085594

RESUMO

Heterologous polyclonal antibodies (pAb) were shown to possess oncolytic properties a century ago with reported clinical responses. More recent preclinical models confirmed pAb efficacy, though their ability to tackle complex target antigens reduces susceptibility to tumor escape. Owing to the recent availability of glyco-humanized pAb (GH-pAb) with acceptable clinical toxicology profile, we revisited use of pAb in oncology and highlighted their therapeutic potential against multiple cancer types. Murine antitumor pAb were generated after repeated immunization of rabbits with murine tumor cell lines from hepatocarcinoma, melanoma, and colorectal cancers. Antitumor pAb recognized and showed cytotoxicity against their targets without cross-reactivity with healthy tissues. In vivo, pAb are effective alone; moreover, these pAb synergize with immune checkpoint inhibitors like anti-PD-L1 in several cancer models. They elicited an antitumor host immune response and prevented metastases. The anticancer activity of pAb was also confirmed in xenografted NMRI nude mice using GH-pAb produced by repeated immunization of pigs with human tumor cell lines. In conclusion, the availability of bioengineered GH-pAb allows for revisiting of passive immunotherapy with oncolytic pAb to fight against solid tumor and cancer metastasis.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Coelhos , Animais , Camundongos , Suínos , Camundongos Nus , Imunização , Melanoma/terapia , Linhagem Celular Tumoral , Anticorpos Antineoplásicos/farmacologia
3.
Autophagy ; 18(3): 678-694, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34740311

RESUMO

Hepatocellular carcinoma is the most frequent primary liver cancer. Macroautophagy/autophagy inhibitors have been extensively studied in cancer but, to date, none has reached efficacy in clinical trials. In this study, we demonstrated that GNS561, a new autophagy inhibitor, whose anticancer activity was previously linked to lysosomal cell death, displayed high liver tropism and potent antitumor activity against a panel of human cancer cell lines and in two hepatocellular carcinoma in vivo models. We showed that due to its lysosomotropic properties, GNS561 could reach and specifically inhibited its enzyme target, PPT1 (palmitoyl-protein thioesterase 1), resulting in lysosomal unbound Zn2+ accumulation, impairment of cathepsin activity, blockage of autophagic flux, altered location of MTOR (mechanistic target of rapamycin kinase), lysosomal membrane permeabilization, caspase activation and cell death. Accordingly, GNS561, for which a global phase 1b clinical trial in liver cancers was just successfully achieved, represents a promising new drug candidate and a hopeful therapeutic strategy in cancer treatment.Abbreviations: ANXA5:annexin A5; ATCC: American type culture collection; BafA1: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CCND1: cyclin D1; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; CQ: chloroquine; iCCA: intrahepatic cholangiocarcinoma; DEN: diethylnitrosamine; DMEM: Dulbelcco's modified Eagle medium; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; HDSF: hexadecylsulfonylfluoride; IC50: mean half-maximal inhibitory concentration; LAMP: lysosomal associated membrane protein; LC3-II: phosphatidylethanolamine-conjugated form of MAP1LC3; LMP: lysosomal membrane permeabilization; MALDI: matrix assisted laser desorption ionization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; MTOR: mechanistic target of rapamycin kinase; MRI: magnetic resonance imaging; NH4Cl: ammonium chloride; NtBuHA: N-tert-butylhydroxylamine; PARP: poly(ADP-ribose) polymerase; PBS: phosphate-buffered saline; PPT1: palmitoyl-protein thioesterase 1; SD: standard deviation; SEM: standard error mean; vs, versus; Zn2+: zinc ion; Z-Phe: Z-Phe-Tyt(tBu)-diazomethylketone; Z-VAD-FMK: carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Autofagossomos/metabolismo , Autofagia/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/farmacologia
4.
J Cancer ; 12(18): 5432-5438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34405006

RESUMO

Patients with advanced hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC) have a very poor prognosis due to the lack of efficient treatments. As observed in several other tumors, the effectiveness of treatments is mainly hampered by the presence of a highly tumorigenic sub-population of cancer cells called cancer stem cells (CSCs). Indeed, CSCs are resistant to chemotherapy and radiotherapy and can regenerate the tumor bulk. Hence, innovative drugs that are efficient against both bulk tumor cells and CSCs would likely improve cancer treatment. In this study, we demonstrated that GNS561, a new autophagy inhibitor that induces lysosomal cell death, showed significant activity against not only the whole tumor population but also a sub-population displaying CSC features (high ALDH activity and tumorsphere formation ability) in HCC and in liver mCRC cell lines. These results were confirmed in vivo in HCC from a DEN-induced cirrhotic rat model in which GNS561 decreased tumor growth and reduced the frequency of CSCs (CD90+CD45-). Thus, GNS561 offers great promise for cancer therapy by exterminating both the tumor bulk and the CSC sub-population. Accordingly, a global phase 1b clinical trial in liver cancers was recently completed.

5.
Ther Adv Chronic Dis ; 11: 2040622320942042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728410

RESUMO

BACKGROUND: Hepatic fibrosis is the result of chronic liver injury that can progress to cirrhosis and lead to liver failure. Nevertheless, there are no anti-fibrotic drugs licensed for human use. Here, we investigated the anti-fibrotic activity of GNS561, a new lysosomotropic molecule with high liver tropism. METHODS: The anti-fibrotic effect of GNS561 was determined in vitro using LX-2 hepatic stellate cells (HSCs) and primary human HSCs by studying cell viability, activity of caspases 3/7, autophagic flux, cathepsin maturation and activity, HSC activation and transforming growth factor-ß1 (TGF-ß1) maturation and signaling. The contribution of GNS561 lysosomotropism to its anti-fibrotic activity was assessed by increasing lysosomal pH. The potency of GNS561 on fibrosis was evaluated in vivo in a rat model of diethylnitrosamine-induced liver fibrosis. RESULTS: GNS561 significantly decreased cell viability and promoted apoptosis. Disrupting the lysosomal pH gradient impaired its pharmacological effects, suggesting that GNS561 lysosomotropism mediated cell death. GNS561 impaired cathepsin activity, leading to defective TGF-ß1 maturation and autophagic processes. Moreover, GNS561 decreased HSC activation and extracellular matrix deposition by downregulating TGF-ß1/Smad and mitogen-activated proteine kinase signaling and inducing fibrolysis. Finally, oral administration of GNS561 (15 mg/kg per day) was well tolerated and attenuated diethylnitrosamine-induced liver fibrosis in this rat model (decrease of collagen deposition and of pro-fibrotic markers and increase of fibrolysis). CONCLUSION: GNS561 is a new potent lysosomotropic compound that could represent a valid medicinal option for hepatic fibrosis treatment through both its anti-fibrotic and its pro-fibrolytic effects. In addition, this study provides a rationale for targeting lysosomes as a promising therapeutic strategy in liver fibrosis.

6.
Invest New Drugs ; 37(6): 1135-1145, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30778887

RESUMO

Among the acquired modifications in cancer cells, changes in lysosomal phenotype and functions are well described, making lysosomes a potential target for novel therapies. Some weak base lipophilic drugs have a particular affinity towards lysosomes, taking benefits from lysosomal trapping to exert anticancer activity. Here, we have developed a new lysosomotropic small molecule, GNS561, and assessed its activity in multiple in vitro intrahepatic cholangiocarcinoma models (HuCCT1 and RBE cell lines and patient-derived cells) and in a chicken chorioallantoic membrane xenograft model. GNS561 significantly reduced cell viability in two intrahepatic cholangiocarcinoma cell lines (IC50 of 1.5 ± 0.2 µM in HuCCT1 and IC50 of 1.7 ± 0.1 µM in RBE cells) and induced apoptosis as measured by caspases activation. We confirmed that GNS561-mediated cell death was related to its lysosomotropic properties. GNS561 induced lysosomal dysregulation as proven by inhibition of late-stage autophagy and induction of a dose-dependent build-up of enlarged lysosomes. In patient-derived cells, GNS561 was more potent than cisplatin and gemcitabine in 2/5 and 1/5 of the patient-derived cells models, respectively. Moreover, in these models, GNS561 was potent in models with low sensitivity to gemcitabine. GNS561 was also efficient in vivo against a human intrahepatic cholangiocarcinoma cell line in a chicken chorioallantoic membrane xenograft model, with a good tolerance at doses high enough to induce an antitumor effect in this model. In summary, GNS561 is a new lysosomotropic agent, with an anticancer activity against intrahepatic cholangiocarcinoma. Further investigations are currently ongoing to fully elucidate its mechanism of action.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Lisossomos/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Colangiocarcinoma/metabolismo , Humanos
7.
Eur J Med Chem ; 46(10): 4808-19, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21880399

RESUMO

Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage.


Assuntos
D-Aminoácido Oxidase/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Animais , Calorimetria/métodos , D-Aminoácido Oxidase/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Ratos , Ressonância de Plasmônio de Superfície/métodos , Termodinâmica
8.
J Pharmacol Exp Ther ; 333(3): 696-706, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20215409

RESUMO

3,5-Seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) is a new cardioprotective compound coming from a chemical series identified initially for neuroprotective properties. TRO40303 binds specifically to the mitochondrial translocator protein 18 kDa (TSPO) at the cholesterol site. After intravenous administration, TRO40303 tissue distribution was comparable to that of TSPO, and, in particular, the drug accumulated rapidly in the heart. In a model of 35 min of myocardial ischemia/24 h of reperfusion in rats, TRO40303 (2.5 mg/kg) reduced infarct size by 38% (p < 0.01 versus control), when administered 10 min before reperfusion, which was correlated with reduced release of apoptosis-inducing factor from mitochondria to the cytoplasm in the ischemic area at risk. Although TRO40303 had no effect on the calcium retention capacity of isolated mitochondria, unlike cyclosporine A, the drug delayed mitochondrial permeability transition pore (mPTP) opening and cell death in isolated adult rat cardiomyocytes subjected to 2 h of hypoxia followed by 2 h of reoxygenation and inhibited mPTP opening in neonatal rat cardiomyocytes treated with hydrogen peroxide. The effects of TRO40303 on mPTP in cell models of oxidative stress are correlated with a significant reduction in reactive oxygen species production and subsequent calcium overload. TRO40303 is a new mitochondrial-targeted drug and inhibits mPTP triggered by oxidative stress. Its mode of action differs from that of other mPTP inhibitors such as cyclosporine A, thus providing a new pharmacological approach to study mPTP regulation. Its efficacy in an animal model of myocardial infarctions makes TRO40303 a promising new drug for the reduction of cardiac ischemia-reperfusion injury.


Assuntos
Cardiotônicos/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Oximas/farmacologia , Secoesteroides/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Cálcio/metabolismo , Cardiotônicos/metabolismo , Cardiotônicos/farmacocinética , Morte Celular/efeitos dos fármacos , Células Cultivadas , Citosol/efeitos dos fármacos , Citosol/metabolismo , Peróxido de Hidrogênio/toxicidade , Injeções Intravenosas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Oximas/metabolismo , Oximas/farmacocinética , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Secoesteroides/metabolismo , Secoesteroides/farmacocinética , Distribuição Tecidual
9.
Vet Parasitol ; 152(1-2): 136-40, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18207642

RESUMO

Belgian Blue (BB) cattle are very sensitive to mange caused by Psoroptes ovis and, in contrast to the case in Holstein cattle, single treatments with ivermectin do not result in complete elimination of the parasite. The objective of the present study was to determine the concentration of ivermectin in plasma, skin and hair following subcutaneous administration to Holstein and BB calves and to assess the influence of breed on drug pharmacokinetics and availability. Two groups of six healthy female Holstein and BB calves were treated with ivermectin (SC formulation) at a dose of 0.2 mg/kg. Blood, skin and hair were collected before treatment and up to 21 days after treatment. Ivermectin was analyzed in plasma and tissue by high-performance liquid chromatography (HPLC). The peak concentrations (Cmax), time-peak concentrations (Tmax), the area under the plasma concentration-time curves (AUC) and the mean residence time (MRT) were determined. The patterns of plasma and tissue ivermectin concentrations were similar in the two breeds of animals, however, the AUC and Cmax levels for plasma and skin were significantly higher in the BB calves. In hair, ivermectin was detected later than in plasma and skin, with the Tmax ranging between 4 days (Holstein group) and 6 days (BB group). The possible reasons for the significantly higher levels in plasma and skin in BB calves compared to Holstein calves are discussed.


Assuntos
Cruzamento , Doenças dos Bovinos/tratamento farmacológico , Inseticidas/farmacocinética , Ivermectina/farmacocinética , Infestações por Ácaros/veterinária , Psoroptidae/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Área Sob a Curva , Bovinos , Doenças dos Bovinos/sangue , Cromatografia Líquida de Alta Pressão/veterinária , Feminino , Cabelo/química , Cabelo/metabolismo , Injeções Subcutâneas/veterinária , Inseticidas/administração & dosagem , Inseticidas/sangue , Ivermectina/administração & dosagem , Ivermectina/sangue , Infestações por Ácaros/tratamento farmacológico , Pele/química , Pele/metabolismo , Fatores de Tempo
10.
Eur J Pharm Sci ; 27(1): 37-43, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16198549

RESUMO

Moxidectin, a macrocyclic lactone (ML), is a potent parasiticide widely used in veterinary medicine and currently under development for use in humans. The contribution of the lymphatic route to the intestinal absorption and transport of moxidectin to the systemic circulation was evaluated in lymph duct-cannulated dogs. Beagle dogs were operated for lymph duct cannulation and were orally dosed with 38g of corn oil and moxidectin (0.2mg/kg, n=3). The lymph and plasma were collected over 24h and moxidectin and triglyceride concentrations were measured. Similarly, control dogs (n=5) were dosed orally with moxidectin and oil and subsequently with moxidectin intravenously. Pharmacokinetic parameters were calculated for moxidectin in the plasma of the dogs. Moxidectin readily accumulated in the lymph and reached a plateau 8h post-administration, paralleling triglyceride appearance. The percentage of moxidectin recovered in lymph was 22+/-3% of the total administered dose with 92% being associated with triglyceride-rich particles. The systemic bioavailability of oral moxidectin coadministered with lipid was only 40% in the lymph duct-cannulated dogs compared with 71% in the controls. Our data clearly indicate that the lymphatic transport process contributes significantly to the post-prandial intestinal absorption of moxidectin and subsequently to its systemic bioavailability. The lymphatic transport of moxidectin offers potential strategies based on lipid formulations to improve the bioavailability of MLs when administered orally.


Assuntos
Anti-Helmínticos/farmacocinética , Sistema Linfático/metabolismo , Administração Oral , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/sangue , Transporte Biológico , Cateterismo , Química Farmacêutica , Óleo de Milho/administração & dosagem , Cães , Absorção Intestinal , Macrolídeos/administração & dosagem , Macrolídeos/sangue , Macrolídeos/farmacocinética , Modelos Animais , Período Pós-Prandial , Ducto Torácico/cirurgia , Triglicerídeos/sangue
11.
Parasitol Res ; 98(3): 244-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16341879

RESUMO

Ivermectin is a member of the macrocyclic lactone family widely used in livestock, pets, and humans as a potent parasiticide. Slight differences in formulation may change the plasma kinetics and efficacy of these compounds. The aim of the study is to evaluate the ability of a liposomal formulation of ivermectin to generate an efficient exposure of the animal to the drug. Ten rabbits were subcutaneously administered with 0.3 mg kg(-1) of ivermectin using Ivomec (n=5) or a liposomal formulation (n=5). The areas under serum concentration-time curve were similar after both treatments, indicating the same bioavailability for the two formulations. However, the liposomal formulation gave a higher C(max) value (33.33 ng ml(-1)) compared with Ivomec (20.82 ng ml(-1)) and a significantly faster absorption as indicated by the T(max) of 0.23 days compared with 1.13 days for the Ivomec formulation. The use of liposomal formulation shows promise as this system improves the efficacy of ivermectin and related drugs.


Assuntos
Antiparasitários/administração & dosagem , Antiparasitários/farmacocinética , Ivermectina/administração & dosagem , Ivermectina/farmacocinética , Lipossomos , Animais , Antiparasitários/sangue , Área Sob a Curva , Formas de Dosagem , Meia-Vida , Injeções Subcutâneas , Ivermectina/sangue , Masculino , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...