Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893543

RESUMO

Antimicrobial-resistant bacteria might be transferred via the foodchain. However, that risk is rarely tracked along different production steps, e.g., from pigs at farm to meat. To close that gap, we performed a prospective study in four conventional and two organic farms from the moment pigs entered the farm until meat sampling at slaughter. Antimicrobial use was recorded (0 to 11 agents). Antimicrobial susceptibility (AMS) against 26 antibiotics, including critically important substances, was tested by microdilution, and tetA-tetB-sulI-sulII-strA-strB-bla-CTXM-qacEΔ1 were included in PCR-genotyping. From 244 meat samples of 122 pigs, 54 samples (22.1%) from 45 animals were positive for E. coli (n = 198). MICs above the breakpoint/ECOFF occurred for all antibiotics except meropenem. One isolate from organic farming was markedly resistant against beta-lactams including fourth-generation cefalosporines. AMS patterns differed remarkably between isolates from one piece of meat, varying from monoresistance to 16-fold multiresistance. Amplicon-typing revealed high similarity between isolates at slaughter and on farm. Prior pig lots andeven the farmer might serve as reservoirs for E. coli isolated from meat at slaughter. However, AMS phenotyping and genotyping indicate that antimicrobial resistance in E. coli is highly dynamic, impairing reliable prediction of health risks from findings along the production chain.

2.
J Appl Microbiol ; 133(4): 2457-2465, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35835564

RESUMO

AIMS: Antibiotic-resistant bacteria affect human and animal health. Hence, their environmental spread represents a potential hazard for mankind. Livestock farming is suspected to be a key factor for spreading antibiotic resistance; consumers expect organic farming to imply less environmental health risk. This study aimed to assess the role of manure from organic and conventional farms for spreading antimicrobial resistance (AMR) genes. METHODS AND RESULTS: AMR-genes-namely tet(A), tet(B), tet(M), sul2 and qacE/qacEΔ1 (potentially associated with multiresistance) were quantified by qPCR. Antimicrobial use during the study period was qualitatively assessed from official records in a binary mode (yes/no). Median concentrations were between 6.44 log copy-equivalents/g for tet(A) and 7.85 for tet(M) in organic liquid manure, and between 7.48 for tet(A) and 8.3 for sul2 in organic farmyard manure. In conventional manure, median concentrations were 6.67 log copy-equivalents/g for sul2, 6.89 for tet(A), 6.77 for tet(B) and 8.36 for tet(M). Integron-associated qac-genes reached median concentrations of 7.06 log copy-equivalents/g in organic liquid manure, 7.13 in conventional manure and 8.18 in organic farmyard manure. The use of tetracyclines or sulfonamides increased concentrations of tet(A) and tet(M), or of sul2, respectively. Comparing farms that did not apply tetracyclines during the study, the relative abundance of tet(A) and tet(M) was still higher for conventional piggeries than for organic ones. CONCLUSIONS: Relative abundances of AMR genes were higher in conventional farms, compared to organic ones. Antibiotic use was linked to the relative abundance of AMR-genes. However, due to the bacterial load, absolute concentrations of AMR-genes were comparable between fertilizers of organic and conventional farms. SIGNIFICANCE AND IMPACT OF STUDY: To our knowledge, this is the first absolute quantification of AMR-genes in manure from organic farms. Our study underlines the importance of long-term reduction in the use of antimicrobial agents in order to minimize antibiotic resistance.


Assuntos
Antibacterianos , Esterco , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fazendas , Fertilizantes/análise , Genes Bacterianos , Humanos , Gado , Esterco/microbiologia , Sulfonamidas , Suínos , Tetraciclinas
3.
Front Microbiol ; 7: 718, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242738

RESUMO

Bacillus cereus is an important cause of foodborne infectious disease and food poisoning. However, B. cereus has also been used as a probiotic in human medicine and livestock production, with low standards of safety assessment. In this study, we evaluated the safety of 15 commercial probiotic B. cereus preparations from China in terms of mislabeling, toxin production, and transferable antimicrobial resistance. Most preparations were incorrectly labeled, as they contained additional bacterial species; one product did not contain viable B. cereus at all. In total, 18 B. cereus group strains-specifically B. cereus and Bacillus thuringiensis-were isolated. Enterotoxin genes nhe, hbl, and cytK1, as well as the ces-gene were assessed by PCR. Enterotoxin production and cytotoxicity were confirmed by ELISA and cell culture assays, respectively. All isolated B. cereus group strains produced the enterotoxin Nhe; 15 strains additionally produced Hbl. Antimicrobial resistance was assessed by microdilution; resistance genes were detected by PCR and further characterized by sequencing, transformation and conjugation assays. Nearly half of the strains harbored the antimicrobial resistance gene tet(45). In one strain, tet(45) was situated on a mobile genetic element-encoding a site-specific recombination mechanism-and was transferable to Staphylococcus aureus and Bacillus subtilis by electro-transformation. In view of the wide and uncontrolled use of these products, stricter regulations for safety assessment, including determination of virulence factors and transferable antimicrobial resistance genes, are urgently needed.

4.
J Microbiol Methods ; 113: 50-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25863142

RESUMO

Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed.


Assuntos
Primers do DNA , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ração Animal , Archaea/genética , Carga Bacteriana , DNA Fúngico/genética , Genes de RNAr , Polimorfismo Conformacional de Fita Simples , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...