Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 14(3): 130-146, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37035220

RESUMO

Insulin resistance and pancreatic ß-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define ß-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1ß are consistently associated with ß-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic ß-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of ß-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during ß-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve ß-cell function.

2.
Microorganisms ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744729

RESUMO

Annually, approximately 23,000 cases of food poisoning by Staphylococcus aureus enterotoxins are reported worldwide. The aim of this study was to determine the occurrence and characterize S. aureus on beef and beef products in South Africa. Organ meats (n = 169), raw processed meat (n = 110), raw intact (n = 53), and ready-to-eat meats (n = 68) were obtained from 25 retail outlets. S. aureus was isolated and enumerated according to the ISO 6888-1 method. Identification of the strains was performed by MALDI-TOF MS. The antimicrobial resistance was determined using the disc diffusion test. The presence of methicillin-resistance genes and the staphylococcal enterotoxin genes was determined by PCR. Prevalence was low (13/400; CI 1.7-5) and all but one positive sample were from organ meats. Eight isolates were resistant to at least one antibiotic. Two isolates carried the mecC gene. All the isolates tested positive for seg, seh, sei, and sep, whilst 53.8% were positive for sea. None of the isolates was positive for ser, sej, seb, sec, or sed. The prevalence of S. aureus was low, with organ meats being the most contaminated. The presence of mecC-positive MRSA and of enterotoxins warrants further investigation and risk assessment.

3.
Antibiotics (Basel) ; 10(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572690

RESUMO

Antimicrobial resistance has been increasing globally, which negatively affects food safety, veterinary, and human medicine. Ineffective antibiotics may cause treatment failure, which results in prolonged hospitalisation, increased mortality, and consequently, increased health care costs. Staphylococcus aureus causes a diverse range of infections including septicaemia and endocarditis. However, in food, it mainly causes food poisoning by the production of enterotoxins. With the discovery of methicillin-resistant S. aureus strains that have a separate reservoir in livestock animals, which were termed as livestock-associated methicillin-resistant S. aureus (LA-MRSA) in 2005, it became clear that animals may pose another health risk. Though LA-MRSA is mainly transferred by direct contact, food transmission cannot be excluded. While the current strains are not very pathogenic, mitigation is advisable, as they may acquire new virulence genes, becoming more pathogenic, and may transfer their resistance genes. Control of LA-MRSA poses significant problems, and only Norway has an active mitigation strategy. There is limited information about LA-MRSA, MRSA in general, and other S. aureus infections from African countries. In this review, we discuss the prevalence and characteristics of antimicrobial susceptible and resistant S. aureus (with a focus on MRSA) from meat and meat products in African countries and compare it to the situation in the rest of the world.

4.
Int J Mol Sci ; 19(6)2018 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890717

RESUMO

While the Zygomycete fungus Conidiobolus coronatus primarily infects insects, it can be pathogenic to mammals as well, including humans. High variability in the treatment of this fungal infection with currently available drugs, including azole drugs is a very common phenomenon. Azoles bind to the cytochrome P450 monooxygenases (P450s/CYP) including CYP51, a sterol 14-α-demethylase, inhibiting the synthesis of cell membrane ergosterol and thus leading to the elimination of infecting fungi. Despite P450's role as a drug target, to date, no information on C. coronatus P450s has been reported. Genome-wide data mining has revealed the presence of 142 P450s grouped into 12 families and 21 subfamilies in C. coronatus. Except for CYP51, the remaining 11 P450 families are new (CYP5854-CYP5864). Despite having a large number of P450s among entomopathogenic fungi, C. coronatus has the lowest number of P450 families, which suggests blooming P450s. Further analysis has revealed that 79% of the same family P450s is tandemly positioned, suggesting that P450 tandem duplication led to the blooming of P450s. The results of this study; i.e., unravelling the C. coronatus P450 content, will certainly help in designing experiments to understand P450s' role in C. coronatus physiology, including a highly variable response to azole drugs with respect to P450s.


Assuntos
Conidiobolus/enzimologia , Conidiobolus/genética , Sistema Enzimático do Citocromo P-450/genética , Duplicação Gênica , Sequência de Aminoácidos , Animais , Conidiobolus/patogenicidade , Sistema Enzimático do Citocromo P-450/química , Genes Fúngicos , Humanos , Anotação de Sequência Molecular , Família Multigênica , Filogenia
5.
Jundishapur J Microbiol ; 7(4): e9310, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25147701

RESUMO

BACKGROUND: Many disease conditions including Staphylococcal infections are becoming increasingly difficult to treat in South Africa due to the surge of vancomycin-oxacillin resistant strains. How widespread this phenomenon is in commensal isolates in the Nkonkobe municipality in the Eastern Cape Province of South Africa is not known, and considering the high level of immunocompromised individuals in the province, this study couldn't have come at a better time. OBJECTIVES: The objective of this study is to evaluate the prevalence of vancomycin and oxacillin co-resistance in methicillin-resistant commensal staphylococci in Nkonkobe municipality, South Africa as part of our larger study on the surveillance of reservoirs of antibiotic resistance in South Africa. MATERIALS AND METHODS: Staphylococcus species were isolated from domestic animals of Nkonkobe municipality, in the Eastern Cape Province of South Africa. The isolates were evaluated for antibiotic susceptibility against a panel of several relevant antibiotics. Specific primer sets were also used for the polymerase chain reaction assay to detect the presence of mecA gene as well as vanA and vanB genes in the genome of resistant Staphylococcus species. RESULTS: A total of 120 Staphylococcus isolates were screened, out of which, 32 (26%) were susceptible to both methicillin and vancomycin, while 12 (10%) had co-resistance to the antibiotics, which is still on the high side, both clinically and epidemiologically. Gentamicin (an aminoglycoside) had a relatively high potency against the isolates with 107 (89.17%) of the bacteria being susceptible to it, while 10 (8.33%) were resistant. On the other hand, erythromycin (a macrolide) was active against 72 (60%) of the isolates, while 5 (4.17%) and 74 (61.67%) of them yielded intermediate and resistant responses, respectively. Similarly, 51 (42.5%) of the isolates were susceptible to rifampicin, while 1 (0.83%) and 17 (14.17%) were intermediate and resistant, respectively. CONCLUSIONS: Ten percent of the isolates were positive for mecA gene among the vancomycin-oxacillin resistant strains, while van gene was not detected in any of the isolates. The data obtained would be useful in clinical control of resistant staphylococcal strains.

6.
Ann Clin Microbiol Antimicrob ; 13: 37, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25056181

RESUMO

BACKGROUND: Listeriosis is a fatal disease caused by pathogenic Listeria bacteria and it is most prevalent in immune-compromised individuals. The increase in numbers of immune-compromised individuals against a background of Listeria antibiotic resistance, limits listeriosis treatment options. This therefore calls for research into substitute treatments, of which, medicinal plants derived compounds offer a viable alternative. METHODS: The broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of three plant triterpenes namely 3ß-hydroxylanosta-9,24-dien-21-oic acid, methyl-3ß-hydroxylanosta-9,24-dien-21-oate and 3ß-acetylursolic acid, against Listeria monocytogenes, Listeria ivanovii and Listeria grayi species. The chequerboard method was used to assess the interactions between the triterpenes and conventional antibiotics: ampicillin, neomycin, gentamicin and penicillin G. The lactate dehydrogenase membrane damage method was used to assess the triterpenes' membrane damaging potentials against the Listeria bacteria. RESULTS: The triterpenes' MIC values were found to range from 0.185 to 1.67 mg/ml while, the MBC determination assay results revealed that the test triterpenes were bacteriostatic against the Listeria bacteria. The interactions involving 3ß-hydroxylanosta-9,24-dien-21-oic acid were mainly additive with ampicillin and synergistic with neomycin, gentamicin and penicillin G. The interactions involving methyl-3ß-hydroxylanosta-9,24-dien-21-oate were mainly antagonistic with ampicillin, indifferent with neomycin, ranging from synergistic to indifference with gentamicin and synergistic with penicillin G. The interactions involving 3ß-acetylursolic acid were mainly indifferent with ampicillin, synergistic with neomycin and gentamicin while ranging between synergistic and additive with penicillin G. The low levels of cytosolic lactate dehydrogenase released from the cells treated with 4× MIC concentration of the triterpenes in comparison to that of cells treated with 3% Triton X-100 proved that membrane damage was not the mode of action of the triterpenes. CONCLUSION: This study therefore shows the potential that these plant triterpenes have in listeriosis chemotherapy especially as shown by the favourable interactions they had with penicillin G, one of the antibiotics of choice in listeriosis treatment.


Assuntos
Antibacterianos/farmacologia , Listeria/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Triterpenos/farmacologia , Antibacterianos/isolamento & purificação , Membrana Celular/efeitos dos fármacos , Interações Medicamentosas , L-Lactato Desidrogenase/análise , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Triterpenos/isolamento & purificação
7.
PLoS One ; 7(11): e49801, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166773

RESUMO

TCR-induced NF-AT activation leads to the expression of both activating and inhibitory proteins. Previously, we had identified Egr-2 and Egr-3 as NF-AT-induced transcription factors which promote the inhibition of T cell activation. In this report we identify Sprouty1 as a downstream target of Egr-3. CD4⁺ T cells lacking Spry1 demonstrate enhanced proliferation and cytokine production. Likewise, Spry1(Flox/Flox) Lck Cre CD8⁺ T cells display increased cytolytic activity. Mechanistically, Spry1 acts at the level of PLC-γ promoting the inhibition of both Ca⁺⁺ induced NF-AT activation and MAP-kinase induced AP-1 activation while sparing NF-κB signaling. In vivo, mice in which Spry1 is selectively deleted in T cells demonstrate enhanced responses to a tumor vaccine and subsequently reject tumors more robustly than Wt mice. These findings suggest that targeting Spry1 might prove to be a novel means of enhancing tumor immunotherapy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Fatores de Transcrição NFATC/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Transcrição AP-1/metabolismo
8.
Immunol Rev ; 191: 107-18, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12614355

RESUMO

The src-family kinases p56lck (Lck) and p59fyn (Fyn) are expressed in T cells and are among the first signaling molecules to be activated downstream of the T cell receptor (TCR). Evidence is emerging that although closely related, these signaling molecules have discrete functions during development, maintenance and activation of peripheral T cells. For example, during thymopoiesis Lck is uniquely able to provide all the signals required for pre-TCRbeta selection, although Fyn can substitute for a subset of these. Positive selection of CD4 single-positive (SP) cells is also critically dependent on the expression of Lck but not Fyn, while differentiation of CD8 SP cells proceeds relatively efficiently in the absence of Lck. In naïve peripheral T cells either Lck or Fyn can transmit TCR-mediated survival signals, and yet only Lck is able to trigger TCR-mediated expansion signals under conditions of lymphopenia. Stimulation of naïve T cells by antigenic stimuli is also severely compromised in the absence of Lck, but more subtly impaired by the absence of Fyn. We discuss recent experiments addressing how these two src-kinase family members interface with downstream signaling pathways to regulate these diverse aspects of T cell behavior.


Assuntos
Diferenciação Celular/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Linfócitos T/enzimologia , Animais , Divisão Celular/fisiologia , Humanos , Proteínas Proto-Oncogênicas c-fyn , Linfócitos T/fisiologia , Timo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...