Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 20(16): 4577-87, 2001 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11500384

RESUMO

Using yeast forward and reverse two-hybrid analysis and biochemical techniques, we present novel and definitive in vivo and in vitro evidence that both the N-terminal domain I and C-terminal domain IV of the host-encoded DnaA initiator protein of Escherichia coli interact physically with plasmid-encoded RepA initiator of pSC101. The N-terminal, but not the C-terminal, region of RepA interacted with DnaA in vitro. These protein-protein interactions are critical for two very early steps of replication initiation, namely origin unwinding and helicase loading. Neither domain I nor IV of DnaA could individually collaborate with RepA to promote pSC101 replication. However, when the two domains are co-expressed within a common cell milieu and allowed to associate non-covalently with each other via a pair of leucine zippers, replication of the plasmid was supported in vivo. Thus, the result shows that physical tethering, either non-covalent or covalent, of domain I and IV of DnaA and interaction of both domains with RepA, are critical for replication initiation. The results also provide the molecular basis for a novel, potential, replication-based bacterial two-hybrid system.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas/metabolismo , Transativadores , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cromatografia de Afinidade , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , DnaB Helicases , Ensaio de Imunoadsorção Enzimática/métodos , Escherichia coli/genética , Zíper de Leucina , Mutagênese , Plasmídeos , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Origem de Replicação , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
2.
Proc Natl Acad Sci U S A ; 98(17): 9569-74, 2001 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-11493686

RESUMO

Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the L1 loop. Several mutations located in the L1 loop region not only reduced the protein-protein interaction but also eliminated or reduced the ability of the mutant forms of Tus to arrest DnaB at a Ter site. At least one mutation, E49K, significantly reduced Tus-DnaB interaction and almost completely eliminated the contrahelicase activity of Tus protein in vitro without significantly reducing the affinity of the mutant form of Tus for Ter DNA, in comparison with the wild-type protein. The results, considered along with the crystal structure of Tus-Ter complex, not only elucidate further the mechanism of helicase arrest but also explain the molecular basis of polarity of replication fork arrest at Ter sites.


Assuntos
Proteínas de Bactérias/fisiologia , DNA Helicases/fisiologia , Replicação do DNA , DNA Bacteriano/biossíntese , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromatografia de Afinidade , DNA Primase/metabolismo , DnaB Helicases , Escherichia coli/genética , Substâncias Macromoleculares , Mutagênese , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
3.
J Biol Chem ; 276(26): 23471-9, 2001 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-11313334

RESUMO

The current models that have been proposed to explain the mechanism of replication termination are (i) passive arrest of a replication fork by the terminus (Ter) DNA-terminator protein complex that impedes the replication fork and the replicative helicase in a polar fashion and (ii) an active barrier model in which the Ter-terminator protein complex arrests a fork not only by DNA-protein interaction but also by mechanistically significant terminator protein-helicase interaction. Despite the existence of some evidence supporting in vitro interaction between the replication terminator protein (RTP) and DnaB helicase, there has been continuing debate in the literature questioning the validity of the protein-protein interaction model. The objective of the present work was two-fold: (i) to reexamine the question of RTP-DnaB interaction by additional techniques and different mutant forms of RTP, and (ii) to investigate if a common domain of RTP is involved in the arrest of both helicase and RNA polymerase. The results validate and confirm the RTP-DnaB interaction in vitro and suggest a critical role for this interaction in replication fork arrest. The results also show that the Tyr(33) residue of RTP plays a critical role both in the arrest of helicase and RNA polymerase.


Assuntos
Bacillus subtilis/genética , DNA Helicases/antagonistas & inibidores , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Azidas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia de Afinidade , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases , Mutação , Estrutura Terciária de Proteína , Piridinas/química , Transcrição Gênica , Tirosina/genética , Tirosina/fisiologia
4.
J Biol Chem ; 276(16): 13160-8, 2001 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-11278792

RESUMO

We have delineated the amino acid to nucleotide contacts made by two interacting dimers of the replication terminator protein (RTP) of Bacillus subtilis with a novel naturally occurring bipolar replication terminus by converting RTP to a site-directed chemical nuclease and mapping its cleavage sites on the terminus. The data show a relatively symmetrical arrangement of the amino acid to base contacts, and a comparison of the bipolar contacts with that of a normal unipolar terminus suggests that the DNA-protein contacts play an important determinative role in generating polarity from structurally symmetrical RTP dimers. The amino acid to nucleotide contacts provided distance constraints that enabled us to build a three-dimensional model of the protein-DNA complex. The model is consistent with features of the bipolar Ter.RTP complex derived from mutational and cross-linking data. The bipolar terminus arrested Escherichia coli DNA replication and DnaB helicase and T7 RNA polymerase in vitro in both orientations. RTP arrested the unwinding of duplex DNA on the bipolar Ter DNA substrate regardless of the length of the duplex DNA. The latter result suggested further that the terminus arrested authentic DNA unwinding by the helicase rather than just translocation of helicase on DNA.


Assuntos
Bacillus subtilis/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Origem de Replicação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , DNA Helicases/metabolismo , Replicação do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , DnaB Helicases , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Especificidade por Substrato , Proteínas Virais
5.
J Biol Chem ; 276(12): 8771-7, 2001 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-11124956

RESUMO

We have examined a replication terminus (psiL1) located on the left arm of the chromosome of Bacillus subtilis and within the yxcC gene and at or near the left replication checkpoint that is activated under stringent conditions. The psiL1 sequence appears to bind to two dimers of the replication terminator protein (RTP) rather weakly and seems to possess overlapping core and auxiliary sites that have some sequence similarities with normal Ter sites. Surprisingly, the asymmetrical, isolated psiL1 site arrested replication forks in vivo in both orientations and independent of stringent control. In vitro, the sequence arrested DnaB helicase in both orientations, albeit more weakly than the normal Ter1 terminus. The key points of mechanistic interest that emerge from the present work are: (i) strong binding of a Ter (psiL1) sequence to RTP did not appear to be essential for fork arrest and (ii) polarity of fork arrest could not be correlated in this case with just symmetrical protein-DNA interaction at the core and auxiliary sites of psiL1. On the basis of the result it would appear that the weak RTP-L1Ter interaction cannot by itself account for fork arrest, thus suggesting a role for DnaB-RTP interaction.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias , Cromossomos Bacterianos , Replicação do DNA , Sequência de Bases , DNA Helicases/antagonistas & inibidores , Primers do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases , Ligação Proteica
6.
Mol Microbiol ; 31(6): 1611-8, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10209736

RESUMO

Sequence-specific replication termini occur in many bacterial and plasmid chromosomes and consist of two components: a cis-acting ter site and a trans-acting replication terminator protein. The interaction of a terminator protein with the ter site creates a protein-DNA complex that arrests replication forks in a polar fashion by antagonizing the action of the replicative helicase (thereby exhibiting a contrahelicase activity). Terminator proteins also arrest RNA polymerases in a polar fashion. Passage of an RNA transcript through a terminus from the non-blocking direction abrogates replication termination function, a mechanism that is likely to be used in conditional termini or replication check points.


Assuntos
Cromossomos Bacterianos/fisiologia , Replicação do DNA/fisiologia , Proteínas de Escherichia coli , Plasmídeos/fisiologia , Regiões Terminadoras Genéticas , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Modelos Genéticos , Modelos Moleculares , Estrutura Secundária de Proteína , Fatores R/genética
7.
Proc Natl Acad Sci U S A ; 96(1): 73-8, 1999 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-9874774

RESUMO

Although many bacterial chromosomes require only one replication initiator protein, e.g., DnaA, most plasmid replicons depend on dual initiators: host-encoded DnaA and plasmid-encoded Rep initiator protein for replication initiation. Using the plasmid pSC101 as a model system, this work investigates the biological rationale for the requirement for dual initiators and shows that the plasmid-encoded RepA specifically interacts with the replicative helicase DnaB. Mutations in DnaB or RepA that disrupt RepA-DnaB interaction cause failure to load DnaB to the plasmid ori in vitro and to replicate the plasmid in vivo. Although, interaction of DnaA with DnaB could not substitute for RepA-DnaB interaction for helicase loading, DnaA along with integration host factor, DnaC, and RepA was essential for helicase loading. Therefore, DnaA is indirectly needed for helicase loading. Instead of a common surface of interaction with initiator proteins, interestingly, DnaB helicase appears to have at least a limited number of nonoverlapping surfaces, each of which interacts specifically with a different initiator protein.


Assuntos
Proteínas de Bactérias , DNA Helicases/metabolismo , Replicação do DNA , DNA Bacteriano/biossíntese , Proteínas de Ligação a DNA , Plasmídeos/biossíntese , Transativadores , Sítios de Ligação , DnaB Helicases , Modelos Genéticos , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo
8.
EMBO J ; 17(17): 5192-200, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9724655

RESUMO

Unlike the chromosome of Escherichia coli that needs only one replication initiator protein (origin recognition protein) called DnaA, many plasmid replicons require dual initiators: host-encoded DnaA and a plasmid-encoded origin recognition protein, which is believed to be the major determinant of replication control. Hitherto, the relative mechanistic roles of dual initiators in DNA replication were unclear. Here, we present the first evidence that DnaA communicates with the plasmid-encoded pi initiator of R6K and contacts the latter at a specific N-terminal region. Without this specific contact, productive unwinding of plasmid ori gamma and replication is abrogated. The results also show that DnaA performs different roles in host and plasmid replication as revealed by the finding that the ATP-activated form of DnaA, while indispensable for oriC replication, was not required for R6K replication. We have analyzed the accessory role of the DNA bending protein, integration host factor (IHF), in promoting initiator-origin interaction and have found that IHF significantly enhances the binding of DnaA to its cognate site. Collectively, the results further advance our understanding of replication initiation.


Assuntos
Replicação do DNA , DNA Bacteriano/biossíntese , Escherichia coli/genética , Plasmídeos/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores Hospedeiros de Integração , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese , Conformação de Ácido Nucleico , Ligação Proteica , Dobramento de Proteína , Transativadores/genética , Transativadores/metabolismo
9.
J Biol Chem ; 273(5): 3051-9, 1998 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-9446621

RESUMO

Since DNA replication and transcription often temporally and spatially overlap each other, the impact of one process on the other is of considerable interest. We have reported previously that transcription is impeded at the replication termini of Escherichia coli and Bacillus subtilis in a polar mode and that, when transcription is allowed to invade a replication terminus from the permissive direction, arrest of replication fork at the terminus is abrogated. In the present report, we have addressed four significant questions pertaining to the mechanism of transcription impedance by the replication terminator proteins. Is transcription arrested at the replication terminus or does RNA polymerase dissociate from the DNA causing authentic transcription termination? How does transcription cause abrogation of replication fork arrest at the terminus? Are the points of arrest of the replication fork and transcription the same or are these different? Are eukaryotic RNA polymerases also arrested at prokaryotic replication termini? Our results show that replication terminator proteins of E. coli and B. subtilis arrest but do not terminate transcription. Passage of an RNA transcript through the replication terminus causes the dissociation of the terminator protein from the terminus DNA, thus causing abrogation of replication fork arrest. DNA and RNA chain elongation are arrested at different locations on the terminator sites. Finally, although bacterial replication terminator proteins blocked yeast RNA polymerases in a polar fashion, a yeast transcription terminator protein (Reb1p) was unable to block T7 RNA polymerase and E. coli DnaB helicase.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias , Códon de Terminação/fisiologia , Replicação do DNA , Escherichia coli/genética , Transcrição Gênica , Sequência de Bases , DNA Helicases/fisiologia , RNA Polimerases Dirigidas por DNA/fisiologia , DnaB Helicases , Dados de Sequência Molecular
11.
Proc Natl Acad Sci U S A ; 93(23): 12902-7, 1996 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-8917517

RESUMO

The primase DnaG of Escherichia coli requires the participation of the replicative helicase DnaB for optimal synthesis of primer RNA for lagging strand replication. However, previous studies had not determined whether the activation of the primase or its loading on the template was accomplished by a helicase-mediated structural alteration of the single-stranded DNA or by a direct physical interaction between the DnaB and the DnaG proteins. In this paper we present evidence supporting direct interaction between the two proteins. We have mapped the surfaces of interaction on both DnaG and DnaB and show further that mutations that reduce the physical interation also cause a significant reduction in primer synthesis. Thus, the physical interaction reported here appears to be physiologically significant.


Assuntos
Proteínas de Bactérias , DNA Helicases/metabolismo , Replicação do DNA , Escherichia coli/metabolismo , RNA Nucleotidiltransferases/metabolismo , RNA Bacteriano/biossíntese , Sequência de Aminoácidos , Sítios de Ligação , DNA Helicases/química , DNA Helicases/isolamento & purificação , DNA Primase , DnaB Helicases , Escherichia coli/genética , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Mutação Puntual , Ligação Proteica , Biossíntese de Proteínas , RNA/biossíntese , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transcrição Gênica
12.
Cell ; 87(5): 881-91, 1996 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-8945515

RESUMO

Termination of DNA replication at a sequence-specific replication terminus is potentiated by the binding of the replication terminator protein (RTP) to the terminus sequence, causing polar arrest of the replicative helicase (contrahelicase activity). Two alternative models have been proposed to explain the mechanism of replication fork arrest. In the first model, the RTP-terminus DNA interaction simply imposes a polar barrier to helicase movement without involving any specific interaction between the helicase and the terminator proteins. The second model proposes that there is a specific interaction between the two proteins, and that the DNA-protein interaction both restricts the fork arrest to the replication terminus and determines the polarity of the process. The evidence presented in this paper strongly supports the second model.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , DNA Bacteriano/fisiologia , Proteínas de Ligação a DNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA Helicases/química , DNA Helicases/genética , Dimerização , DnaB Helicases , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/genética , Dobramento de Proteína , Estrutura Terciária de Proteína
13.
Proc Natl Acad Sci U S A ; 93(20): 10647-52, 1996 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-8855233

RESUMO

The replication terminator protein (RTP) of Bacillus subtilis is a homodimer that binds to each replication terminus and impedes replication fork movement in only one orientation with respect to the replication origin. The three-dimensional structure of the RTP-DNA complex needs to be determined to understand how structurally symmetrical dimers of RTP generate functional asymmetry. The functional unit of each replication terminus of Bacillus subtilis consists of four turns of DNA complexed with two interacting dimers of RTP. Although the crystal structure of the RTP apoprotein dimer has been determined at 2.6-A resolution, the functional unit of the terminus is probably too large and too flexible to lend itself to cocrystallization. We have therefore used an alternative strategy to delineate the three dimensional structure of the RTP-DNA complex by converting the protein into a site-directed chemical nuclease. From the pattern of base-specific cleavage of the terminus DNA by the chemical nuclease, we have mapped the amino acid to base contacts. Using these contacts as distance constraints, with the crystal structure of RTP, we have constructed a model of the DNA-protein complex. The biological implications of the model have been discussed.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Sítios de Ligação , Gráficos por Computador , Replicação do DNA , Proteínas de Ligação a DNA/química , Desoxirribonucleoproteínas/ultraestrutura , Ácido Edético/química , Ferro/química , Substâncias Macromoleculares , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
15.
EMBO J ; 15(12): 3164-73, 1996 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-8670817

RESUMO

The replication terminator protein (RTP) of Bacillus subtilis impedes replication fork movement in a polar mode upon binding as two interacting dimers to each of the replication termini. The mode of interaction of RTP with the terminus DNA is of considerable mechanistic significance because the DNA-protein complex not only localizes the helicase-blocking activity to the terminus, but also generates functional asymmetry from structurally symmetric protein dimers. The functional asymmetry is manifested in the polar impedance of replication fork movement. Although the crystal structure of the apoprotein has been solved, hitherto there was no direct evidence as to which parts of RTP were in contact with the replication terminus. Here we have used a variety of approaches, including saturation mutagenesis, genetic selection for DNA-binding mutants, photo cross-linking, biochemical and functional characterizations of the mutant proteins, and X-ray crystallography, to identify the regions of RTP that are either in direct contact with or are located within 11 angstroms of the replication terminus. The data show that the unstructured N-terminal arm, the alpha3 helix and the beta2 strand are involved in DNA binding. The mapping of amino acids of RTP in contact with DNA, confirms a 'winged helix' DNA-binding motif.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cristalografia por Raios X , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fotoquímica , Ligação Proteica , Relação Estrutura-Atividade
16.
EMBO J ; 15(10): 2530-9, 1996 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-8665860

RESUMO

In Escherichia coli and Bacillus subtilis replication fork arrest occurs in the terminus at sequence-specific sites by the binding of replication terminator proteins to the fork arrest sites. The protein-DNA complex causes polar arrest of the replication forks by inhibiting the activity of the replicative helicases in only one orientation of the terminus with respect to the replication origin. This activity has been named as polar contrahelicase. In this paper we report on a second novel activity of the terminator proteins of E.coli and B.subtilis, namely the ability of the proteins to block RNA chain elongation by several prokaryotic RNA polymerases in a polar mode. The replication terminator proteins ter and RTP of E.coli and B.subtilis respectively, impeded RNA chain elongation catalyzed by T7, SP6 and E.coli RNA polymerases in a polar mode at the replication arrest sites. The RNA chain anti-elongation and the contrahelicase activities were isopolar. Whereas one monomer of ter was necessary and sufficient to block RNA chain elongation, two interacting dimers of RTP were needed to effect the same blockage. The biological significance of the RNA chain anti-elongation activity is manifested in the functional inactivation of a replication arrest site by invasion of RNA chains from outside, and the consequent need to preserve replication arrest activity by restricting the passage of transcription through the terminus-terminator protein complex.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Origem de Replicação , Regiões Terminadoras Genéticas , Transcrição Gênica , Bacillus subtilis/genética , Sequência de Bases , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/genética , Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico
17.
Proc Natl Acad Sci U S A ; 93(11): 5522-6, 1996 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-8643608

RESUMO

The replication initiator protein pi of plasmid R6K is known to interact with the seven iterons of the gamma origin/enhancer and activate distant replication origins alpha and beta (ori alpha and ori beta) by pi-mediated DNA looping. Here we show that pi protein specifically interacts in vitro with the host-encoded helicase DnaB. The site of interaction of pi on DnaB has been localized to a 37-aa-long region located between amino acids 151 and 189 of DnaB. The surface of pi that interacts with DnaB has been mapped to the N-terminal region of the initiator protein between residues 1 and 116. The results suggest that during initiation of replication, the replicative helicase DnaB is first recruited to the gamma enhancer by the pi protein. In a subsequent step, the helicase probably gets delivered from ori gamma to ori alpha and ori beta by pi-mediated DNA looping.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA , Escherichia coli/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , DNA Helicases/biossíntese , DNA Helicases/isolamento & purificação , DnaB Helicases , Escherichia coli/genética , Glutationa Transferase/biossíntese , Cinética , Dados de Sequência Molecular , Fases de Leitura Aberta , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Biossíntese de Proteínas , Fatores R , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Transativadores/biossíntese , Transativadores/isolamento & purificação , Transcrição Gênica
18.
Proc Natl Acad Sci U S A ; 93(8): 3253-8, 1996 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-8622923

RESUMO

The replication terminator protein (RTP) of Bacillus subtilis causes polar fork arrest at replication termini by sequence-specific interaction of two dimeric proteins with the terminus sequence. The crystal structure of the RTP protein has been solved, and the structure has already provide valuable clues regarding the structural basis of its function. However, it provides little information as to the surface of the protein involved in dimer-dimer interaction. Using site-directed mutagenesis, we have identified three sites on the protein that appear to mediate the dimer-dimer interaction. Crystallographic analysis of one of the mutant proteins (Y88F) showed that its structure is unaltered when compared to the wild-type protein. The locations of the three sites suggested a model for the dimer-dimer interaction that involves an association between two beta-ribbon motifs. This model is supported by a fourth mutation that was predicted to disrupt the interaction and was shown to do so. Biochemical analyses of these mutants provide compelling evidence that cooperative protein-protein interaction between two dimers of RTP is essential to impose polar blocks to the elongation of both DNA and RNA chains.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sequência de Bases , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Terciária de Proteína
19.
J Biol Chem ; 270(49): 29138-44, 1995 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-7493939

RESUMO

Replication forks are arrested at sequence-specific replication termini primarily, perhaps exclusively, by polar arrest of helicase-catalyzed DNA unwinding by the terminator protein. The mechanism of this arrest is of considerable interest. This paper presents experimental evidence in support of four major points pertaining to termination of DNA replication. First, the replication terminator proteins of both Escherichia coli and Bacillus subtilis are helicase-specific contrahelicases, i.e. the proteins specifically impede the activities of helicases that are involved in symmetric DNA replication but not of those involved in conjugative DNA transfer and rolling circle replication. Second, the terminator protein (Ter) of E. coli blocks not only helicase translocation but also authentic DNA unwinding. Third, the replication terminator protein of Gram-positive B. subtilis is a polar contrahelicase of the primosomal helicase PriA of Gram-negative E. coli. Finally, the blockage of PriA-catalyzed DNA unwinding was abrogated by the passage of an RNA transcript through the replication terminator protein-terminus complex. These results are significant because of their relevance to the mechanistic aspects of replication termination.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Sequência de Bases , Transporte Biológico , DNA/química , Replicação do DNA , Dados de Sequência Molecular , Proteína de Replicação A
20.
Cell ; 80(4): 651-60, 1995 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-7867072

RESUMO

The crystal structure of the replication terminator protein (RTP) of B. subtilis has been determined at 2.6 A resolution. As previously suggested by both biochemical and biophysical studies, the molecule exists as a symmetric dimer and is in the alpha + beta protein-folding class. The protein has several uncommon features, including an antiparallel coiled-coil, which serves as the dimerization domain, and both an alpha-helix and a beta-ribbon suitably positioned to interact with the major and minor grooves of B-DNA. A site has been identified on the surface of RTP that is biochemically and positionally suitable for interaction with the replication-specific helicase. Other features of the structure are consistent with the polar contrahelicase mechanism of the protein. A model of the interaction between RTP and its cognate DNA is presented.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Replicação do DNA , Proteínas de Ligação a DNA/química , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cristalografia por Raios X , DNA Helicases/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Regiões Terminadoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...