Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 16(38): e2003309, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32797715

RESUMO

The downsides of conventional cancer monotherapies are profound and enormously consequential, as drug-resistant cancer cells and cancer stem cells (CSC) are typically not eliminated. Here, a targeted theranostic nano vehicle (TTNV) is designed using manganese-doped mesoporous silica nanoparticle with an ideal surface area and pore volume for co-loading an optimized ratio of antineoplastic doxorubicin and a drug efflux inhibitor tariquidar. This strategically framed TTNV is chemically conjugated with folic acid and hyaluronic acid as a dual-targeting entity to promote folate receptor (FR) mediated cancer cells and CD44 mediated CSC uptake, respectively. Interestingly, surface-enhanced Raman spectroscopy is exploited to evaluate the molecular changes associated with therapeutic progression. Tumor microenvironment selective biodegradation and immunostimulatory potential of the MSN-Mn core are safeguarded with a chitosan coating which modulates the premature cargo release and accords biocompatibility. The superior antitumor response in FR-positive syngeneic and CSC-rich human xenograft murine models is associated with a tumor-targeted biodistribution, favorable pharmacokinetics, and an appealing bioelimination pattern of the TTNV with no palpable signs of toxicity. This dual drug-loaded nano vehicle offers a feasible approach for efficient cancer therapy by on demand cargo release in order to execute complete wipe-out of tumor reinitiating cancer stem cells.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Resistência a Medicamentos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas , Medicina de Precisão , Dióxido de Silício/uso terapêutico , Distribuição Tecidual , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...