Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 6(5): e0067621, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34612674

RESUMO

Staphylococcus aureus is a pathogenic bacterium but also a commensal of skin and anterior nares in humans. As S. aureus transits from skins/nares to inside the human body, it experiences changes in temperature. The production and content of S. aureus extracellular vesicles (EVs) have been increasingly studied over the past few years, and EVs are increasingly being recognized as important to the infectious process. Nonetheless, the impact of temperature variation on S. aureus EVs has not been studied in detail, as most reports that investigate EV cargoes and host cell interactions are performed using vesicles produced at 37°C. Here, we report that EVs in S. aureus differ in size and protein/RNA cargo depending on the growth temperature used. We demonstrate that the temperature-dependent regulation of vesicle production in S. aureus is mediated by the alpha phenol-soluble modulin peptides (αPSMs). Through proteomic analysis, we observed increased packaging of virulence factors at 40°C, whereas the EV proteome has greater diversity at 34°C. Similar to the protein content, we perform transcriptomic analysis and demonstrate that the RNA cargo also is impacted by temperature. Finally, we demonstrate greater αPSM- and alpha-toxin-mediated erythrocyte lysis with 40°C EVs, but 34°C EVs are more cytotoxic toward THP-1 cells. Together, our study demonstrates that small temperature variations have great impact on EV biogenesis and shape the interaction with host cells. IMPORTANCE Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells. The impact of temperature variations experienced by S. aureus during the infectious process on EVs is unknown. Here, we demonstrate the importance of temperature in vesicle production and packaging. High temperatures promote packaging of virulence factors and increase the protein and lipid concentration but reduce the overall RNA abundance and protein diversity in EVs. The importance of temperature changes is highlighted by the fact that EVs produced at low temperature are more toxic toward macrophages, whereas EVs produced at high temperature display more hemolysis toward erythrocytes. Our research brings new insights into temperature-dependent vesiculation and interaction with the host during S. aureus transition from colonization to virulence.


Assuntos
Vesículas Extracelulares/química , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Temperatura , Fatores de Virulência/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Proteoma/análise , Proteômica/métodos , Células THP-1 , Virulência
2.
mSphere ; 6(2)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731473

RESUMO

Staphylococcus aureus is an opportunistic pathogen that colonizes the anterior nares of 30 to 50% of the population. Colonization is most often asymptomatic; however, self-inoculation can give rise to potentially fatal infections of the deeper tissues and blood. Like all bacteria, S. aureus can sense and respond to environmental cues and modify gene expression to adapt to specific environmental conditions. The transition of S. aureus from the nares to the deeper tissues and blood is accompanied by changes in environmental conditions, such as nutrient availability, pH, and temperature. In this study, we perform transcriptomics and proteomics on S. aureus cultures growing at three physiologically relevant temperatures, 34°C (nares), 37°C (body), and 40°C (pyrexia), to determine if small scale, biologically meaningful alterations in temperature impact S. aureus gene expression. Results show that small but definite temperature changes elicit a large-scale restructuring of the S. aureus transcriptome and proteome in a manner that, most often, inversely correlates with increasing temperature. We also provide evidence that a large majority of these changes are modulated at the posttranscriptional level, possibly by sRNA regulatory elements. Phenotypic analyses were also performed to demonstrate that these changes have physiological relevance. Finally, we investigate the impact of temperature-dependent alterations in gene expression on S. aureus pathogenesis and demonstrate decreased intracellular invasion of S. aureus grown at 34°C. Collectively, our results demonstrate that small but biologically meaningful alterations in temperature influence S. aureus gene expression, a process that is likely a major contributor to the transition from a commensal to pathogen.IMPORTANCE Enteric bacterial pathogens, like Escherichia coli, are known to experience large temperature differences as they are transmitted through the fecal oral route. This change in temperature has been demonstrated to influence bacterial gene expression and facilitate infection. Staphylococcus aureus is a human-associated pathogen that can live as a commensal on the skin and nares or cause invasive infections of the deeper tissues and blood. Factors influencing S. aureus nasal colonization are not fully understood; however, individuals colonized with S. aureus are at increased risk of invasive infections through self-inoculation. The transition of S. aureus from the nose (colonization) to the body (infection) is accompanied by a modest but definite temperature increase, from 34°C to 37°C. In this study, we investigate whether these host-associated small temperature changes can influence S. aureus gene expression. Results show widespread changes in the bacterial transcriptome and proteome at three physiologically relevant temperatures (34°C, 37°C, and 40°C).


Assuntos
Proteínas de Bactérias/análise , Regulação Bacteriana da Expressão Gênica , Proteoma , Staphylococcus aureus/genética , Temperatura , Transcriptoma , Células Cultivadas , Células Epiteliais/microbiologia , Humanos , Nariz/citologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Fatores de Virulência/genética
3.
PLoS One ; 14(4): e0214521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30933991

RESUMO

Staphylococcus aureus is a Gram-positive bacterial pathogen of global concern and a leading cause of bacterial infections worldwide. Asymptomatic carriage of S. aureus on the skin and in the anterior nares is common and recognized as a predisposing factor to invasive infection. Transition of S. aureus from the carriage state to that of invasive infection is often accompanied by a temperature upshift from approximately 33°C to 37°C. Such a temperature shift is known in other pathogens to influence gene expression, often resulting in increased production of factors that promote survival or virulence within the host. One mechanism by which bacteria modulate gene expression in response to temperature is by the regulatory activity of RNA-based thermosensors, cis-acting riboregulators that control translation efficiency. This study was designed to identify and characterize RNA-based thermosensors in S. aureus. Initially predicted by in silico analyses of the S. aureus USA300 genome, reporter-based gene expression analyses and site-specific mutagenesis were performed to demonstrate the presence of a functional thermosensor within the 5' UTR of cidA, a gene implicated in biofilm formation and survival of the pathogen. The nucleic sequence composing the identified thermosensor are sufficient to confer temperature-dependent post-transcriptional regulation, and activity is predictably altered by the introduction of site-specific mutations designed to stabilize or destabilize the structure within the identified thermosensor. The identified regulator is functional in both the native bacterial host S. aureus and in the distally related species Escherichia coli, suggesting that its regulatory activity is independent of host-specific factors. Interestingly, unlike the majority of bacterial RNA-based thermosensors characterized to date, the cidA thermosensor facilitates increased target gene expression at lower temperatures. In addition to the characterization of the first RNA-based thermosensor in the significant pathogen S. aureus, it highlights the diversity of function within this important class of ribo-regulators.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , RNA Bacteriano/genética , Staphylococcus aureus/genética , Temperatura , Biofilmes , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Genoma Bacteriano , Humanos , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , RNA/análise , Processamento Pós-Transcricional do RNA , Infecções Estafilocócicas/microbiologia , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...