Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986069

RESUMO

Wild blueberries (WBs) have been documented to decrease oxidative stress in active and sedentary populations as well as influence lipolytic enzymes and increase the rate of fat oxidation (FAT-ox) during rest. To examine the effect of WBs on the rate of FAT-ox and lipid peroxidation during submaximal exercise, 11 healthy, aerobically trained males (26 ± 7.5 years, 74.9 ± 7.54 kg, 10.5 ± 3.2% BF) completed a 2-week washout avoiding foods high in anthocyanins, then completed a control exercise protocol cycling at 65% of VO2peak for 40 min. Participants then consumed 375 g/d of anthocyanins for two weeks before repeating the exercise protocol. WBs increased FAT-ox when cycling at 65% of VO2peak by 19.7% at 20, 43.2% at 30, and 31.1% at 40 min, and carbohydrate oxidation (CHO-ox) decreased by 10.1% at 20, 19.2% at 30, and 14.8% at 40 min of cycling at 65% of VO2peak. Lactate was lower with WBs at 20 (WB: 2.6 ± 1.0, C: 3.0 ± 1.1), 30 (WB: 2.2 ± 0.9, C: 2.9 ± 1.0), and 40 min (WB: 1.9 ± 0.8, C: 2.5 ± 0.9). Results indicate that WBs may increase the rate of FAT-ox during moderate-intensity activity in healthy, active males.


Assuntos
Antocianinas , Mirtilos Azuis (Planta) , Masculino , Humanos , Antocianinas/metabolismo , Oxirredução , Tecido Adiposo/metabolismo , Ácido Láctico/metabolismo , Consumo de Oxigênio , Metabolismo dos Lipídeos
2.
Ticks Tick Borne Dis ; 11(4): 101434, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32417295

RESUMO

The complete folate biosynthesis pathway exists in the genome of a rickettsial endosymbiont of Ixodes pacificus, Rickettsia monacensis strain Humboldt (formerly known as Rickettsia species phylotype G021). Recently, our lab demonstrated that the folA gene of strain Humboldt, the final gene in the folate biosynthesis pathway, encodes a functional dihydrofolate reductase enzyme. In this study, we report R. monacensis strain Humboldt has a functional GTP cyclohydrolase I (GCH1), an enzyme required for the hydrolysis of GTP to form 7,8-dihydroneopterin triphosphate in the folate biosynthesis pathway. The GCH1 gene of R. monacensis, folE, share homology with the folE gene of R. monacensis strain IrR/Munich, with a nucleotide sequence identity of 99%. Amino acid alignment and comparative protein structure modeling have shown that the FolE protein of R. monacensis has a conserved core subunit of GCH1 from the T-fold structural superfamily. All amino acid residues, including conserved GTP binding sites and zinc binding sites, are preserved in the FolE protein of R. monacensis. A recombinant GST-FolE protein from R. monacensis was overexpressed in Escherichia coli, purified by affinity chromatography, and assayed for enzyme activity in vitro. The in vitro enzymatic assay described in this study accorded the recombinant GCH1 enzyme of R. monacensis with a specific activity of 0.81 U/mg. Our data suggest folate genes of R. monacensis strain Humboldt have the potential to produce biochemically active enzymes for de novo folate synthesis, addressing the physioecological underpinnings behind tick-Rickettsia symbioses.


Assuntos
Proteínas de Bactérias/metabolismo , GTP Cicloidrolase/metabolismo , Rickettsia/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , GTP Cicloidrolase/genética , Ixodes/microbiologia , Alinhamento de Sequência , Simbiose
3.
Mol Cancer Ther ; 12(8): 1579-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23686837

RESUMO

The EGF receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung carcinoma (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKI) such as erlotinib. However, despite the efficacy observed in patients with NSCLC harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in patients with NSCLC who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke, evidenced by their autophosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating cigarette smoke-induced resistance to TKIs in both WT EGFR- and L858R MT EGFR-expressing NSCLC cells. First, we show that cigarette smoke exposure of A549 cells leads to time-dependent activation of Src, which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we show that Src inhibition restores TKI sensitivity in cigarette smoke-exposed NSCLC cells, preventing EGFR autophosphorylation in the presence of erlotinib. Furthermore, we show that overexpression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to cigarette smoke. Importantly, the TKI resistance that emerges even in cigarette smoke-exposed L858R EGFR-expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Fumar/efeitos adversos , Quinases da Família src/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Fenótipo , Fosforilação , Ligação Proteica , Proto-Oncogene Mas , Ativação Transcricional , Quinases da Família src/metabolismo
4.
Toxicol Sci ; 123(2): 511-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775728

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene-based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Luciferases/genética , Plasmídeos/genética , Dibenzodioxinas Policloradas/farmacologia , Receptores de Hidrocarboneto Arílico/genética , Elementos de Resposta/genética , Animais , Bioensaio , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Clonais , Monitoramento Ambiental/métodos , Indução Enzimática , Humanos , Luciferases/biossíntese , Camundongos , Valor Preditivo dos Testes , Ratos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Reprodutibilidade dos Testes , Elementos de Resposta/efeitos dos fármacos , Especificidade da Espécie , Transcrição Gênica/efeitos dos fármacos , Transfecção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Talanta ; 83(5): 1415-21, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21238730

RESUMO

The chemically activated luciferase expression (CALUX) system is a mechanistically based recombinant luciferase reporter gene cell bioassay used in combination with chemical extraction and clean-up methods for the detection and relative quantitation of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like halogenated aromatic hydrocarbons in a wide variety of sample matrices. While sample extracts containing complex mixtures of chemicals can produce a variety of distinct concentration-dependent luciferase induction responses in CALUX cells, these effects are produced through a common mechanism of action (i.e. the Ah receptor (AhR)) allowing normalization of results and sample potency determination. Here we describe the diversity in CALUX response to PCDD/Fs from sediment and soil extracts and not only report the occurrence of superinduction of the CALUX bioassay, but we describe a mechanistically based approach for normalization of superinduction data that results in a more accurate estimation of the relative potency of such sample extracts.


Assuntos
Luciferases/química , Receptores de Hidrocarboneto Arílico/química , Animais , Bioensaio/métodos , Linhagem Celular Tumoral , Luciferases/genética , Camundongos , Solo/química
6.
Sci China Chem ; 53(5): 1010-1016, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-21394221

RESUMO

Reporter genes produce a protein product in transfected cells that can be easily measured in intact or lysed cells and they have been extensively used in numerous basic and applied research applications. Over the past 10 years, reporter gene assays have been widely accepted and used for analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like compounds in various types of matrices, such as biological, environmental, food and feed samples, given that high-resolution instrumental analysis techniques are impractical for large-scale screening analysis. The most sensitive cell-based reporter gene bioassay systems developed are the mechanism-based CALUX (Chemically Activated Luciferase Expression) and CAFLUX (Chemically Activated Fluorescent Expression) bioassays, which utilize recombinant cell lines containing stably transfected dioxin (AhR)-responsive firefly luciferase or enhanced green fluorescent protein (EGFP) reporter genes, respectively. While the current CALUX and CAFLUX bioassays are very sensitive, increasing their lower limit of sensitivity, magnitude of response and dynamic range for chemical detection would significantly increase their utility, particularly for those samples that contain low levels of dioxin-like HAHs (i.e., serum). In this study, we report that the addition of modulators of cell signaling pathways or modification of cell culture conditions results in significant improvement in the magnitude and overall responsiveness of the existing CALUX and CAFLUX cell bioassays.

7.
Am J Physiol Endocrinol Metab ; 296(1): E203-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18840765

RESUMO

Diets high in fat are associated with increased susceptibility to obesity and metabolic syndrome. Increased adipose tissue that is caused by high-fat diets (HFD) results in altered storage of lipophilic toxicants like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which may further increase susceptibility to metabolic syndrome. Because both TCDD and HFD are associated with increased breast cancer risk, we examined their effects on metabolic syndrome-associated phenotypes in three mouse models of breast cancer: 7,12-dimethylbenz[a]anthracene (DMBA), Tg(MMTV-Neu)202Mul/J (HER2), and TgN(MMTV-PyMT)634Mul/J (PyMT), all on an FVB/N genetic background. Pregnant mice dosed with 1 microg/kg of TCDD or vehicle on gestational day 12.5 were placed on a HFD or low-fat diet (LFD) at parturition. Body weights, percent body fat, and fasting blood glucose were measured longitudinally, and triglycerides were measured at study termination. On HFD, all cancer models reached the pubertal growth spurt ahead of FVB controls. Among mice fed HFD, the HER2 model had a greater increase in body weight and adipose tissue from puberty through adulthood compared with the PyMT and DMBA models. However, the DMBA model consistently had higher fasting blood glucose levels than the PyMT and HER2 models. TCDD only impacted serum triglycerides in the PyMT model maintained on HFD. Because the estrogenic activity of the HFD was three times lower than that of the LFD, differential dietary estrogenic activities did not drive the observed phenotypic differences. Rather, the HFD-dependent changes were cancer model dependent. These results show that cancer models can have differential effects on metabolic syndrome-associated phenotypes even before cancers arise.


Assuntos
Gorduras na Dieta/toxicidade , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Exposição Materna/efeitos adversos , Síndrome Metabólica/metabolismo , Dibenzodioxinas Policloradas/toxicidade , 9,10-Dimetil-1,2-benzantraceno , Animais , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Carcinógenos , Modelos Animais de Doenças , Feminino , Estudos Longitudinais , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Gravidez , Distribuição Aleatória , Receptores Citoplasmáticos e Nucleares/metabolismo
8.
Environ Toxicol Chem ; 26(6): 1122-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17571676

RESUMO

The chemically activated luciferase expression assay, the chemically activated fluorescence expression assay, and the enzyme-linked immunosorbent assay (ELISA) are all bioanalytical methods that have been used for the detection and quantification of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). However, no comparisons of the results obtained by these three methods have been published analyzing identical replicates of purified sample extracts. Therefore, we have evaluated the performance of each of these methods for analyzing PCDD/Fs in aliquots of extracts from aged-contaminated soil samples and compared the results with those obtained by gas chromatography/high-resolution mass spectrometry (GC/HRMS). The quantitative performance was assessed and the effects of sample purification and data interpretation on the quality of the bioassay results were investigated. Results from the bioanalytical techniques were, in principle, not significantly different from each other or from the GC/HRMS data (p = 0.05). Furthermore, properly used, all of the bioanalytical techniques examined were found to be sufficiently sensitive, selective, and accurate to be used in connection with soil remediation activities when aiming at the remediation goal recommended by the U.S. Environmental Protection Agency (i.e., <1000 pg toxic equivalency/g). However, a site-specific correction factor should be applied with the use of the ELISA to account for differences between the toxic equivalency factors and the ELISA cross-reactivities of the various PCDD/F congeners, which otherwise might significantly underestimate the PCDD/F content.


Assuntos
Dioxinas/análise , Poluentes do Solo/análise , Bioensaio , Ensaio de Imunoadsorção Enzimática , Cromatografia Gasosa-Espectrometria de Massas
9.
J Biochem Mol Toxicol ; 20(3): 103-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16788953

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals, including the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we have examined the ability of diuron, a widely used herbicide, and several structurally related substituted phenylureas to bind to and activate/inhibit the AhR and AhR signal transduction. Diuron induced CYP1A1 mRNA levels in mouse hepatoma (Hepa1c1c7) cells and AhR-dependent luciferase reporter gene expression in stably transfected mouse, rat, guinea pig, and human cell lines. In addition, ligand binding and gel retardation analysis demonstrated the ability of diuron to competitively bind to and stimulate AhR transformation and DNA binding in vitro and in intact cells. Several structurally related substituted phenylureas competitively bound to the guinea pig hepatic cytosolic AhR, inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced AhR-dependent luciferase reporter gene expression in a species-specific manner and stimulated AhR transformation and DNA binding, consistent with their role as partial AhR agonists. These results demonstrate not only that diuron and related substituted phenylureas are AhR ligands but also that exposure to these chemicals could induce/inhibit AhR-dependent biological effects.


Assuntos
Diurona/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Citocromo P-450 CYP1A1/genética , DNA/metabolismo , Diurona/química , Diurona/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Cobaias , Humanos , Luciferases/genética , Camundongos , Modelos Químicos , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/metabolismo , Dibenzodioxinas Policloradas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
10.
Talanta ; 63(5): 1123-33, 2004 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18969542

RESUMO

Proper epidemiological, risk assessment and exposure analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related halogenated aromatic hydrocarbons (HAHs) requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). High-resolution instrumental analysis techniques are established for these chemicals, however, these procedures are very costly and time-consuming and as such, they are impractical for large scale sampling studies (i.e. for epidemiological studies and assessment of areas with widespread contamination). Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take advantage of the ability of these chemicals to activate the aromatic hydrocarbon receptor (AhR) and the AhR signal transduction pathway. Here we review the currently available in vitro AhR-based cell bioassay systems with a focus on recent recombinant reporter gene cell lines that have been developed for detection and relative quantitation of TCDD and related HAHs. Comparison of the relative sensitivities of the various cell bioassays and examples of their use in screening and analysis of environmental, biological, and food and feed samples are presented. Currently available experimental results and validation studies demonstrate the utility of these cell bioassay systems to provide a relatively rapid, accurate, and cost effective screening approach for the detection of TCDD and related HAHs in a variety of environmental, biological, food and feed samples. The availability of these cell bioassay systems will not only facilitate the large scale sampling studies needed for accurate assessment of contamination and exposure to these environmental chemicals, but they provide avenues for the identification of novel classes of TCDD-like chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...